Tolong dong bagi yg bisa ntar aku follow dan aku

Berikut ini adalah pertanyaan dari windy2120 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong dong bagi yg bisa ntar aku follow dan aku kasih 25 poin​
Tolong dong bagi yg bisa ntar aku follow dan aku kasih 25 poin​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Penyajian SPL dalam bentuk operasi matriks :

\left[\begin{array}{ccc}1&-2&1\\3&1&-2\\-2&1&1\end{array}\right]\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=\left[\begin{array}{ccc}-5\\11\\-2\end{array}\right]

\purple{\huge{a~)}}~Dengan metode Cramer :

\text{D}=\left|\begin{array}{ccc}1&-2&1\\3&1&-2\\-2&1&1\end{array}\right|

\text{D}= (1 × 1 × 1) + (–2 × –2 × –2) + (1 × 3 × 1) – (1 × 1 × –2) – (1 × –2 × 1) – (–2 × 3 × 1)

\text{D}= 1 + (–8) + 3 – (–2) – (–2) – (–6) = 6

\text{D}_{x_1}=\left|\begin{array}{ccc}-5&-2&1\\11&1&-2\\-2&1&1\end{array}\right|

\text{D}_{x_1}= (–5 × 1 × 1) + (–2 × –2 × –2) + (1 × 11 × 1) – (1 × 1 × –2) – (–5 × –2 × 1) – (–2 × 11 × 1)

\text{D}_{x_1}= –5 + (–8) + 11 – (–2) – 10 – (–22) = 12

x_1=\frac{\text{D}_{x_1}}{\text{D}}=\frac{12}{6}~\to \red{\huge{x_1=2}}

\text{D}_{x_2}=\left|\begin{array}{ccc}1&-5&1\\3&11&-2\\-2&-2&1\end{array}\right|

\text{D}_{x_2}= (1 × 11 × 1) + (–5 × –2 × –2) + (1 × 3 × –2) – (1 × 11 × –2) – (1 × –2 × –2) – (–5 × 3 × 1)

\text{D}_{x_2}= 11 + (–20) + (–6) – (–22) – 4 – (–15) = 18

x_2=\frac{\text{D}_{x_2}}{\text{D}}=\frac{18}{6}~\to \red{\huge{x_2=3}}

\text{D}_{x_3}=\left|\begin{array}{ccc}1&-2&-5\\3&1&11\\-2&1&-2\end{array}\right|

\text{D}_{x_3}= (1 × 1 × –2) + (–2 × 11 × –2) + (–5 × 3 × 1) – (–5 × 1 × –2) – (1 × 11 × 1) – (–2 × 3 × –2)

\text{D}_{x_3}= –2 + 44 + (–15) – 10 – 11 – 12 = 6

x_3=\frac{\text{D}_{x_3}}{\text{D}}=\frac{-6}{6}~\to \red{\huge{x_3=-1}}

\\

\purple{\huge{b~)}}~Dengan metode invers matriks :

\text{A}=\left[\begin{array}{ccc}1&-2&1\\3&1&-2\\-2&1&1\end{array}\right]

\text{Kofaktor~(A)}=\left[\begin{array}{ccc}+\left|\begin{array}{ccc}1&-2\\1&1\end{array}\right|&-\left|\begin{array}{ccc}3&-2\\-2&1\end{array}\right|&+\left|\begin{array}{ccc}3&1\\-2&1\end{array}\right|\\-\left|\begin{array}{ccc}-2&1\\1&1\end{array}\right|&+\left|\begin{array}{ccc}1&1\\-2&1\end{array}\right|&-\left|\begin{array}{ccc}1&-2\\-2&1\end{array}\right|\\+\left|\begin{array}{ccc}-2&1\\1&-2\end{array}\right|&-\left|\begin{array}{ccc}1&1\\3&-2\end{array}\right|&+\left|\begin{array}{ccc}1&-2\\3&1\end{array}\right|\end{array}\right]

\text{Kofaktor~(A)}=\left[\begin{array}{ccc}+(~(1\times 1)-(-2\times 1)~)&-(~(3\times 1)-(-2\times -2)~)&+(~(3\times 1)-(1\times -2)~)\\-(~(-2\times 1)-(1\times 1)~)&+(1\times 1)-(1\times -2)~)&-(~(1\times 1)-(-2\times -2)~)\\+(~(-2\times -2)-(1\times 1)~)&-(~(1\times -2)-(1\times 3)~)&+(~(1\times 1)-(-2\times 3)~)\end{array}\right]

\text{Kofaktor~(A)}=\left[\begin{array}{ccc}3&1&5\\3&3&3\\3&5&7\end{array}\right]

Adj.\text{~(A)}=\text{Kofaktor~(A)}^\text{T}

Adj.\text{~(A)}=\left[\begin{array}{ccc}3&3&3\\1&3&5\\5&3&7\end{array}\right]

\text{A}^{-1}=\frac{1}{6}\left[\begin{array}{ccc}3&3&3\\1&3&5\\5&3&7\end{array}\right]

\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}3&3&3\\1&3&5\\5&3&7\end{array}\right]\left[\begin{array}{ccc}-5\\11\\-2\end{array}\right]

\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}(3\times -5)+(3\times 11)+(3\times -2)\\(1\times -5)+(3\times 11)+(5\times -2)\\(5\times -5)+(3\times 11)+(7\times -2)\end{array}\right]

\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=\frac{1}{6}\left[\begin{array}{ccc}12\\18\\-6\end{array}\right]

\red{\huge{\left[\begin{array}{ccc}x_1\\x_2\\x_3\end{array}\right]=\left[\begin{array}{ccc}2\\3\\-1\end{array}\right]}}

\purple{\huge{c~)}}~Dengan metode Gauss-Jordan :

\left[\begin{array}{ccc}1&-2&1\\3&1&-2\\-2&1&1\end{array}\right|\left.\begin{array}{ccc}-5\\11\\-2\end{array}\right]

\begin{array}{rrr}~\\b_2-3b_1\to\\b_3+2b_1\to\end{array}\left[\begin{array}{ccc}1&-2&1\\0&7&-5\\0&-3&3\end{array}\right|\left.\begin{array}{ccc}-5\\26\\-12\end{array}\right]

\begin{array}{rrr}~\\b_2\div 7\to\\~\end{array}\left[\begin{array}{ccc}1&-2&1\\0&1&-\frac{5}{7}\\0&-3&3\end{array}\right|\left.\begin{array}{ccc}-5\\\frac{26}{7}\\-12\end{array}\right]

\begin{array}{rrr}b_1+2b_2\to\\~\\b_3+3b_2\to\end{array}\left[\begin{array}{ccc}1&0&-\frac{3}{7}\\0&1&-\frac{5}{7}\\0&0&\frac{6}{7}\end{array}\right|\left.\begin{array}{ccc}\frac{17}{7}\\\frac{26}{7}\\-\frac{6}{7}\end{array}\right]

\begin{array}{rrr}~\\~\\b_3\times \frac{7}{6}\to\end{array}\left[\begin{array}{ccc}1&0&-\frac{3}{7}\\0&1&-\frac{5}{7}\\0&0&1\end{array}\right|\left.\begin{array}{ccc}\frac{17}{7}\\\frac{26}{7}\\-1\end{array}\right]

\begin{array}{rrr}b_1+\frac{3}{7}b_3\to\\b_2+\frac{5}{7}b_3\to\\~\end{array}\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right|\left.\begin{array}{ccc}2\\3\\-1\end{array}\right]

\red{\huge{\begin{array}{ccc}x_1=2&x_2=3&x_3=-1\end{array}}}

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 03 Aug 21