Diketahui ∆ ABC dengan panjang sisi b = 9 cm,

Berikut ini adalah pertanyaan dari Goodboy2020 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Diketahui ∆ ABC dengan panjang sisi b = 9 cm, c = 12 cm, dan besar ∠A = 60°. Tentukan panjang sisi a = . . . .

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diketahui ΔABC dengan panjang sisi b = 9 cm, c = 12 cm dan besar sudut A = 60°. Maka panjang sisi a adalah  \bf 3\sqrt{13}~cm.

Pendahuluan :

\bf\blacktriangleright Pengertian:

Trigonometri adalah ilmu matematika yang mempelajari mengenai sudut. Contoh dari sudut yang akan dipelajari : sinus, cosinus, tangen, cosecan, secan, dan cotangen.

 \\

\bf\blacktriangleright Perbandingan~Trigonometri :

\circ~\rm sin~\alpha=\frac{depan}{miring}

\circ~\rm cos~\alpha=\frac{samping}{miring}

\circ~\rm tan~\alpha=\frac{depan}{samping}

 \\

\bf\blacktriangleright Identitas~Trigonometri:

\circ~\rm tan~\alpha = \frac{sin~\alpha}{cos~\alpha}

\circ~\rm cot~\alpha=\frac{cos ~\alpha}{sin~\alpha}

\circ~\rm csc~\alpha=\frac{1}{sin~\alpha}

\circ~\rm sec~\alpha=\frac{1}{cos~\alpha}

\circ~\rm cot~\alpha=\frac{1}{tan~\alpha}

\circ~\rm sin^2\alpha+cos^2\alpha=1

\circ~ \rm 1+tan^2\alpha=sec^2\alpha

\circ~\rm 1+cot^2 \alpha=csc^2\alpha

 \\

\bf\blacktriangleright Tabel~Trigonometri:

\rm{\boxed{ \begin{array}{c|c|c|c|c|c} \underline {{}\alpha} &\underline{\bf 0^o}&\underline{\bf 30^o}& \underline{\bf 45^o}&\underline{\bf 60^o}&\underline{\bf 90^o} \\\\ \bf sin~\alpha & 0 & \frac{1}{2} & \frac{1}{2}\sqrt{2} & \frac{1}{2}\sqrt{3} & 1 \\\\ \bf cos~\alpha & 1 & \frac{1}{2}\sqrt{3} & \frac{1}{2}\sqrt{2} & \frac{1}{2} & 0 \\\\ \bf tan~\alpha & 0 & \frac{1}{3}\sqrt{3} & 1 & \sqrt{3} & \infty \end{array}}}

•Kuadran I (0° ≤ α ≤ 90°) = semua +

•Kuadran II (90°≤ α ≤ 180°) = sin +

•Kuadran III (180° ≤ α ≤ 270°) = tan +

•Kuadran IV (270° ≤ α ≤ 360°) = cos +

•Fungsi tetap 180 ± α atau 360 ± α

•Fungsi berubah 90 ± α atau 270 ± α (sin menjadi cos, cos menjadi sin, tan menjadi cotan)

\\

\bf\blacktriangleright Aturan~Sinus, Cosinus, dan~Luas~Segitiga:

•Aturan Sinus :

\rm\frac{a}{sin~A}=\frac{b}{sin~B}=\frac {c}{sin~C}

•Aturan Cosinus :

\rm\circ~a^2=b^2+c^2 -2bc\times cos~A

\rm\circ~b^2=a^2+c^2 -2ac\times cos~B

\rm\circ~c^2=a^2+b^2 -2ab \times cos~C

•Luas Segitiga :

\rm\circ~L=\frac{1}{2}\times b\times c\times sin~A

\rm\circ~L=\frac{1}{2}\times a\times c\times sin~B

\rm\circ~L=\frac{1}{2}\times a\times b\times sin~C

dimana :

•a = sisi di depan sudut A

•b = sisi di depan sudut B

•c = sisi di depan sudut C

Pembahasan :

Diketahui :

  • Panjang sisi b = 9 cm
  • Panjang sisi c = 12 cm
  • Besar sudut A = 60°

Ditanya :

Panjang sisi a?

Jawab :

Aturan cosinus :

 \rm a^2 = 9^2+12^2-2(9)(12)\times cos~60^o

 \rm a^2 = 81+144 - 216 \times \frac{1}{2}

 \rm a^2 = 225 - 108

 \rm a ^2 = 117

 \rm a = \sqrt{117}

 \rm a = \sqrt{9\times 13}

 \bf a = 3\sqrt{13}~cm

Kesimpulan :

Jadi, panjang sisi a adalah  \bf 3\sqrt{13}~cm.

Pelajari Lebih Lanjut :

1) Operasi Hitung Trigonometri

2) Perbandingan Trigonometri

3) Identitas Trigonometri

4) Aturan Sinus

5) Aturan Cosinus

6) Soal Cerita Sudut Elevasi

Detail Jawaban :

  • Kelas : 10
  • Mapel : Matematika
  • Materi : Trigonometri
  • Kode Kategorisasi : 10.2.7
  • Kata Kunci : Cos, Sudut, Panjang, Segitiga, Sisi

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 21 Dec 21