Jika |u| = 8 dan |v| = 13 serta nilai

Berikut ini adalah pertanyaan dari monochrome01 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Jika |u| = 8 dan |v| = 13 serta nilai tangen sudut antara u dan v adalah 2,4, hasil uㆍv adalah​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jika |u| = 8 dan |v| = 13 serta nilai tangen sudut antara u dan v adalah 2,4. Maka hasil u . v adalah 40.

Pendahuluan :

 \rm \blacktriangleright Pengertian :

Vektor adalah besaran yang memiliki nilai dan arah. Vektor terdiri dari 2 jenis, yaitu vektor dua dimensi (bidang) dan vektor tiga dimensi (ruang). Penamaan vektor dapat berupa :  \overrightarrow{\rm AB} , \overrightarrow{\rm u}, \underline{\rm u}, dan~\bold {u}. Notasi penulisan vektor terdiri dari 3 jenis :

1) Vektor kolom :  \overrightarrow {\rm AB} = \left(\begin{matrix} 3 \\ 4 \end{matrix}\right)

2) Vektor baris :  \overrightarrow{\rm v} = (3, 4 , 5)

3) Vektor huruf :  \underline{\rm u} = \rm 6i -2j +7k

 \\

 \rm \blacktriangleright Rumus-rumus~Vektor :

 \bf \star Penjumlahan~dan~Pengurangan Vektor

 \left(\begin{matrix} 5 \\ 7 \end{matrix}\right) + \left(\begin{matrix} 2 \\ 9 \end{matrix}\right)  \rm = \left(\begin{matrix} 7 \\ 16 \end{matrix}\right)

 \rm i + 2j + 4i + 5j = (i+ 4i) + (2j+5j) = 5i + 7j

 \\

 \bf \star Vektor~Posisi :

\overrightarrow{\rm AB} = \overrightarrow{\rm AO} + \overrightarrow{\rm OB}

 \overrightarrow{\rm AB} = -\overrightarrow{\rm OA} + \overrightarrow{\rm OB}

 \overrightarrow{\rm AB}= \overrightarrow{\rm b} - \overrightarrow{\rm a}

 \\

 \bf \star Panjang~Vektor (Modulus~Vektor) :

•2 Dimensi :  |\overrightarrow{\rm AB}| = \sqrt{x^2 + y^2}

•3 Dimensi :  |\overrightarrow{\rm AB}| = \sqrt{x^2 + y^2 + z^2}

 \\

 \bf \star Vektor ~Satuan :

 \rm Vektor~Satuan \hat{a} = \frac{\overrightarrow{\rm a}}{|\overrightarrow {\rm a}|}

 \\

 \bf \star Perkalian~Vektor :

 \rm 2(3i + 4j) = 6i + 8j

 \rm \left(\begin{matrix} 5 \\ 7 \end{matrix}\right) . \left(\begin{matrix} 2 \\ 9 \end{matrix}\right)  \rm = \left(\begin{matrix} 10 \\ 63 \end{matrix}\right) = 10 + 63 = 73

 \overrightarrow {\rm a} . \overrightarrow{\rm b} = |\overrightarrow{\rm a}| \times |\overrightarrow{\rm b}|\times cos~ \theta

\\

 \bf \star Proyeksi~Vektor :

1) Panjang proyeksi vektor (proyeksi skalar) :

\overrightarrow{\rm a} pada \overrightarrow{\rm b}adalah |\overrightarrow{\rm a_b}| = |\frac{\overrightarrow{\rm a}.\overrightarrow{\rm b}}{|\overrightarrow{\rm b}|}|

\overrightarrow{\rm b} pada \overrightarrow{\rm a}adalah |\overrightarrow{\rm b_a}| = |\frac{\overrightarrow{\rm a}.\overrightarrow{\rm b}}{|\overrightarrow{\rm a}|}|

2) Vektor proyeksi vektor (proyeksi vektor orthogonal)

 \overrightarrow{\rm a}pada \overrightarrow{\rm b}adalah \overrightarrow{\rm a_b} = (\frac{\overrightarrow{\rm a}. \overrightarrow{\rm b}}{|\overrightarrow{\rm b}|^2}) . \overrightarrow{\rm b}

 \overrightarrow{\rm b}pada \overrightarrow{\rm a}adalah \overrightarrow{\rm b_a} = (\frac{\overrightarrow{\rm a}. \overrightarrow{\rm b}}{|\overrightarrow{\rm a}|^2}) . \overrightarrow{\rm a}

Pembahasan :

Diketahui :

  • |u| = 8
  • |v| = 13
  • Nilai tangen sudut anyara u dan v = 2,4

Ditanya :

Hasil u . v ?

Jawab :

 \rm tan = 2,4 = \frac{24}{10} = \frac{depan}{samping}

Cari nilai sisi miring dengan rumus pythagoras :

 \rm miring = \sqrt{depan^2 + samping^2}

 \rm miring = \sqrt{24^2 + 10^2}

 \rm miring = \sqrt{576+100}

 \rm miring = \sqrt{676}

 \rm miring = 26

Nilai cos :

 \rm cos = \frac{samping}{miring} = \frac{10}{26}

Gunakan rumus perkalian yang ada diketahui sudut :

 \rm u.v = |u|\times|v| \times cos

 \rm u.v = 8 \times 13 \times \frac{10}{26}

 \rm u.v = \frac{8\times 13\times 10}{26}

 \rm u.v = \frac{1040}{26}

 \bf u.v = 40

Kesimpulan :

Jadi, hasil dari u . v adalah 40.

Pelajari Lebih Lanjut :

1) Vektor Posisi

2) Panjang Vektor

3) Perkalian Vektor

4) Perkalian Vektor yang Ada Diketahui Sudutnya

5) Proyeksi Vektor Orthogonal

Detail Jawaban :

  • Kelas : 10
  • Mapel : Matematika
  • Materi : Vektor
  • Kode Kategorisasi : 10.2.7.1
  • Kata Kunci : Perkalian Vektor, Segitiga Siku-siku

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 17 Aug 21