mohon bantuannya kak no 4,5,6​

Berikut ini adalah pertanyaan dari daaaaa19 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Mohon bantuannya kak

no 4,5,6​
mohon bantuannya kak no 4,5,6​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\purple{\huge{4.}}

\sf \overrightarrow{AB}=((-4-3)~,~(-2-(-1))~,~(0-4))

\sf \overrightarrow{AB}=(-7~,~-1~,~-4)

\sf \left|\overrightarrow{AB}\right|=\sqrt{(-7)^2+(-1)^2+(-4)^2}\sf =\sqrt{49+1+16}\sf =\sqrt{66}

\sf \overrightarrow{AC}=((3-3)~,~(-2-(-1))~,~(1-4))

\sf \overrightarrow{AC}=(0~,~-1~,~-3)

\sf \left|\overrightarrow{AC}\right|=\sqrt{0^2+(-1)^2+(-3)^2}\sf =\sqrt{0+1+9}\sf =\sqrt{10}

[tex]\sf \overrightarrow{AB}.\overrightarrow{AC}=(-7\times 0)+(-1\times -1)+(-4\times -3)\sf =0+1+12\sf =13

\sf cos~\angle~BAC=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|\times \left|\overrightarrow{AC}\right|}

\sf cos~\angle~BAC=\frac{13}{\sqrt{66}\times \sqrt{10}}=\frac{13}{\sqrt{660}}\sf \approx 0,506

\sf \angle~BAC\approxarc.\sf cos~0,506

\red{\huge{\sf \angle~BAC\approx 60\degree}}

\\

\purple{\huge{5.}}

\sf cos~\frac{\pi}{6}=\frac{\vec{a}.\vec{b}}{\sqrt{3}\times 1}

\vec{a}.\vec{b}\sf ~=\sqrt{3}\times \frac{1}{2}\sqrt{3}

\vec{a}.\vec{b}\sf ~=\frac{3}{2}

\left|\vec{a}+\vec{b}\right|=\sqrt{\left|\vec{a}\right|^2+\left|\vec{b}\right|^2+2\times \left|\vec{a}\right|\times \left|\vec{b}\right|\times \sf cos~\frac{\pi}{6}}

\left|\vec{a}+\vec{b}\right|=\sqrt{\left(\sqrt{3}\right)^2+1^2+2\times \sqrt{3}\times 1\times \frac{1}{2}\sqrt{3}}=\sqrt{3+1+2\times \frac{3}{2}}=\sqrt{3+1+3}

\left|\vec{a}+\vec{b}\right|=\sqrt{7}

\left|\vec{a}-\vec{b}\right|=\sqrt{\left|\vec{a}\right|^2+\left|\vec{b}\right|^2-2\times \left|\vec{a}\right|\times \left|\vec{b}\right|\times \sf cos~\frac{\pi}{6}}=\sqrt{\left(\sqrt{3}\right)^2+1^2-2\times \sqrt{3}\times 1\times \frac{1}{2}\sqrt{3}}=\sqrt{3+1-2\times \frac{3}{2}}=\sqrt{3+1-3}

\left|\vec{a}-\vec{b}\right|=1

\left(\vec{a}+\vec{b}\right).\left(\vec{a}-\vec{b}\right)=\left|\vec{a}\right|^2-\left|\vec{b}\right|^2=\left(\sqrt{3}\right)^2-1^2

\left(\vec{a}+\vec{b}\right).\left(\vec{a}-\vec{b}\right)=2

Jika dimisalkan sudut antara vektor \left(\vec{a}+\vec{b}\right)dan vektor\left(\vec{a}-\vec{b}\right)adalah\beta, maka :

\sf cos~\beta=\frac{\left(\vec{a}+\vec{b}\right).\left(\vec{a}-\vec{b}\right)}{\left|\vec{a}+\vec{b}\right|\times \left|\vec{a}-\vec{b}\right|}

\sf cos~\beta=\frac{2}{\sqrt{7}\times 1}

\red{\huge{\sf cos~\beta=\frac{2}{7}\sqrt{7}}}

\\

\purple{\huge{6.}}

Dimisalkan sudut antara vektor \vec{a}dan vektor\vec{b}adalah\alpha, maka :

\sf cos~\alpha=\frac{\vec{a}.\vec{b}}{\left|\vec{a}\right|\times \left|\vec{b}\right|}

\sf cos~\frac{\pi}{3}=\frac{(2\times 1)+(-1\times 3)+(3\times -\it{p}\sf ~)}{\sqrt{2^2+(-1)^2+3^2}\times \sqrt{1^2+3^2+(-\it{p}\sf ~)^2}}

\sf \frac{1}{2}=\frac{2-3-3\it{p}}{\sqrt{4+1+9}\times \sqrt{1+9+\it{p}\sf ~^2}}

\sf \frac{1}{2}=\frac{-1-3\it{p}}{\sqrt{14}\times \sqrt{10+\it{p}\sf ~^2}}

\sf \frac{1}{2}=\frac{-1-3\it{p}}{\sqrt{14\times \left(10+\it{p}\sf ~^2\right)}}

\sf \frac{1}{2}=\frac{-1-3\it{p}}{\sqrt{140+14\it{p}\sf ~^2}}

\sf \sqrt{140+14\it{p}\sf ~^2}=2(-1-3\it{p}\sf ~)

\sf \sqrt{14\it{p}\sf ~^2+140}=-2-6\it{p}

\sf \left(\sqrt{14\it{p}\sf ~^2+140}\right)^2=(-2-6\it{p}\sf ~)^2

\sf 14\it{p}\sf ~^2+140=36\it{p}\sf ~^2+24\it{p}\sf ~+4

\sf 36\it{p}\sf ~^2-14\it{p}\sf ~^2+24\it{p}\sf ~+4-140=0

\sf 22\it{p}\sf ~^2+24\it{p}\sf ~-136=0

\sf 11\it{p}\sf ~^2+12\it{p}\sf ~-68=0

(11p+34)(p-2)=0

\red{\huge{p=-\frac{34}{11}}}~~atau~~\red{\huge{p=2}}

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 31 Jul 21