Berikut ini adalah pertanyaan dari klaraliarahmadani pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas
semoga
dapet
Nilai
bagus
note: doain besok penyerahan nilai PTS semoga dapet nilai bagus y
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Jawab:
Formula:
nPr =n! / (n1! n2! . . . nk!)
''BISMILLAH''
step 1
Address the formula, input parameters and values
Total number of alphabets (n) & subsets (n1, n2, . . nk) in the word "BISMILLAH"
n = 9
Subsets : B = 1; I = 2; S = 1; M = 1; L = 2; A = 1; H = 1;
n1(B) = 1, n2(I) = 2, n3(S) = 1, n4(M) = 1, n5(L) = 2, n6(A) = 1, n7(H) = 1
step 2
Apply the input parameter values in the nPr formula
=9! / (1! 2! 1! 1! 2! 1! 1! )
=1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 / {(1) (1 x 2) (1) (1) (1 x 2) (1) (1)}
=362880 / 4
= 90720
In 90720 distinct ways, the letters of word "BISMILLAH" can be arranged.
"SEMOGA"
Total number of alphabets (n) & subsets (n1, n2, . . nk) in the word "SEMOGA"
n = 6
Subsets : S = 1; E = 1; M = 1; O = 1; G = 1; A = 1;
n1(S) = 1, n2(E) = 1, n3(M) = 1, n4(O) = 1, n5(G) = 1, n6(A) = 1
==================================
Apply the input parameter values in the nPr formula
=9! / (1! 2! 1! 1! 2! 1! 1! )
=1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 / {(1) (1 x 2) (1) (1) (1 x 2) (1) (1)}
=362880 / 4
= 90720
In 90720 distinct ways, the letters of word "BISMILLAH" can be arranged.
"DAPET"
n = 5
Subsets : D = 1; A = 1; P = 1; E = 1; T = 1;
n1(D) = 1, n2(A) = 1, n3(P) = 1, n4(E) = 1, n5(T) = 1
==================================
=5! / (1! 1! 1! 1! 1! )
=1 x 2 x 3 x 4 x 5 / {(1) (1) (1) (1) (1)}
=120 / 1
= 120
In 120 distinct ways, the letters of word "DAPET" can be arranged.
''NILAI''
n = 5
Subsets : N = 1; I = 2; L = 1; A = 1;
n1(N) = 1, n2(I) = 2, n3(L) = 1, n4(A) = 1
================================
=5! / (1! 2! 1! 1! )
=1 x 2 x 3 x 4 x 5 / {(1) (1 x 2) (1) (1)}
=120 / 2
= 60
In 60 distinct ways, the letters of word "NILAI" can be arranged.
''BAGUS''
n = 5
Subsets : B = 1; A = 1; G = 1; U = 1; S = 1;
n1(B) = 1, n2(A) = 1, n3(G) = 1, n4(U) = 1, n5(S) = 1
==================================
=5! / (1! 1! 1! 1! 1! )
=1 x 2 x 3 x 4 x 5 / {(1) (1) (1) (1) (1)}
=120 / 1
= 120
In 120 distinct ways, the letters of word "BAGUS" can be arranged.
Semoga dengan pertanyaan yang sudah terjawab oleh HellPrincess dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Thu, 06 Jan 22