MOHON DIBANTUBESOK DIKUMPULKAN​

Berikut ini adalah pertanyaan dari masriyatitity pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

MOHON DIBANTU
BESOK DIKUMPULKAN​
MOHON DIBANTUBESOK DIKUMPULKAN​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawab:

12) pgs:  3x+4y-31 = 0

   

    secara umum :  (x - a)(x₁-a) + (y-b)(y₁-b) = r²

    pusat (-2,3) --> a = -2 dan b = 3

    ( x + 2 )( x₁ + 2 ) + ( y - 3 ) ( y₁ - 3 ) = r²

     (xx₁ + 2x+2x₁+4) + (yy₁ - 3y-3y₁+9)  = r²

     (x₁+2)x + 2x₁ + 4 + (y₁-3)y - 3y₁ + 9 = r²

     (x₁+2)x +  (y₁-3)y +  2x₁ - 3y₁ + 13 = r²

     (x₁+2)x +  (y₁-3)y +  2x₁ - 3y₁ + 13 - r² = 0

pgs:    3  x +     4y    -   31                        = 0

     

      x₁ + 2 = 3   maka  x₁ = 1

      y₁ - 3  = 4  maka  y₁ = 7

   

      2x₁ - 3y₁ + 13 - r² = -31

      2(1) - 3(7) + 13 - r² = -31

        2  -   21  + 13 - r² = -31

                        - 6 - r² = -31

                                r² = 25

                       

   

     pers lingkaran :

     x² + y² + Ax + By + C = 0

    A = -2a = -2(-2) = 4

    B = -2b = -2(3) = -6

     C = a²+b² - r²

         = 4 + 9 - 25

         = -12

   

      x² + y² + 4x - 6y - 12 = 0  

     

atau cara Syaiton

      r=\frac{ax_{1} +by_{1}+c }{\sqrt[]{(x_{1}) ^{2}+(y_{1})^{2} } }=\frac{-2.3+3.4-31}{\sqrt{3^{2}+4^{2} } }=\frac{25}{5 }=5

      r² = 25

     A =  -2a = -2(-2) = 4

     B = -2b = -2(3) = -6

      C = a²+b² - r²

         = 4 + 9 - 25

         = -12

    x² + y² + 4x - 6y - 12 = 0  

                 

13) x² + y² + 4x + by - 12 = 0

      a = -¹/₂ A

         = -¹/₂ (4)

         = -2  

     

      b = -¹/₂ B

         = -¹/₂ (b)

             

     pusat (-2, -¹/₂ b)

         

         

Penjelasan dengan langkah-langkah:

Pelajari konsep Lingkaran dan pgs

Semoga dengan pertanyaan yang sudah terjawab oleh hendrisyafa dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 01 Jul 21