Kuis +50: Diketahui deret {n²-7n+12, n²-4, n²-5n+6} adalah deret geometri dan deret aritmatika

Berikut ini adalah pertanyaan dari KLF pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Kuis +50:Diketahui deret
{n²-7n+12, n²-4, n²-5n+6}
adalah deret geometri
dan deret aritmatika ...

Buktikan jika b = r₁ + r₂

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Untuk deret geometri

Cari nilai n:

\displaystyle \tt \Rightarrow\frac{U_2}{U_1} = \frac{U_3}{U_2}

 \small\displaystyle\tt\Rightarrow\frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12} = \frac{ {n}^{2} - 5n + 6}{ {n}^{2} - 4}

 \small\displaystyle\tt\Rightarrow\frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12} = \frac{(n - 2)(n - 3)}{(n + 2)(n - 2)}

 \small\displaystyle\tt\Rightarrow\frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12} = \frac{ \cancel{(n - 2)}(n - 3)}{(n + 2) \cancel{(n - 2)}}

 \small\displaystyle\tt\Rightarrow\frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12} = \frac{n - 3}{n + 2}

\displaystyle \tt \Rightarrow( {n}^{2} - 4)(n + 2) = (n - 3)( {n}^{2} - 7n + 12)

\displaystyle \tt \Rightarrow {n}^{3} + 2 {n}^{2} - 4n - 8 = {n}^{3} - 10 {n}^{2} + 33n - 36

\displaystyle \tt \Rightarrow \cancel{{n}^{3}} + 2 {n}^{2} - 4n - 8 = \cancel{{n}^{3}} - 10 {n}^{2} + 33n - 36

\displaystyle \tt \Rightarrow2 {n}^{2} - 4n - 8 = - 10 {n}^{2} + 33n - 36

\displaystyle \tt \Rightarrow2 {n}^{2} - 4n - 8 + 10 {n}^{2} - 33n + 36 = 0

\displaystyle \tt \Rightarrow12 {n}^{2} - 37n - 28 = 0

\displaystyle \tt \Rightarrow(3n - 4)(4n - 7)= 0

 \boxed{\displaystyle \tt \Rightarrow \: n_1= \frac{4}{3} \: \: \: \: \: \: \: \: n_2 = \frac{7}{4}}

.

Cari r₁ dan r₂ :

 \small\displaystyle\tt\Rightarrow \:r_1 = \frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12}

 \small\displaystyle\tt\Rightarrow \:r_1 = \frac{ { \left( \frac{4}{3} \right)}^{2} - 4}{ { \left( \frac{4}{3} \right)}^{2} - 7{ \left( \frac{4}{3} \right)} + 12}

 \small\displaystyle\tt\Rightarrow \:r_1 = \frac{ \frac{16}{9} - 4}{ \frac{16}{9} - \frac{28}{3} + 12}

 \small\displaystyle\tt\Rightarrow \:r_1 = \frac{ \frac{16}{9} - \frac{36}{9} }{ \frac{16}{9} - \frac{84}{9} + \frac{108}{9} }

 \small\displaystyle\tt\Rightarrow \:r_1 = \frac{ - \frac{20}{9} }{ \frac{40}{9} } = \boxed{ - \frac{1}{2} }

.

 \small\displaystyle\tt\Rightarrow \:r_2= \frac{ {n}^{2} - 4}{ {n}^{2} - 7n + 12}

 \small\displaystyle\tt\Rightarrow \:r_2 = \frac{ { \left( \frac{7}{4} \right)}^{2} - 4}{ { \left( \frac{7}{4} \right)}^{2} - 7{ \left( \frac{7}{4} \right)} + 12}

 \small\displaystyle\tt\Rightarrow \:r_2 = \frac{ \frac{49}{16} - 4}{ \frac{49}{16} - \frac{49}{4} + 12}

 \small\displaystyle\tt\Rightarrow \:r_2= \frac{ \frac{49}{16} - \frac{64}{16} }{ \frac{49}{16} - \frac{196}{16} + \frac{192}{16} }

 \small\displaystyle\tt\Rightarrow \:r_2 = \frac{ - \frac{15}{16} }{ \frac{45}{16} } = \boxed{ - \frac{1}{3} }

....

....

Untuk deret aritmatika

Cari nilai n:

\displaystyle \tt \Rightarrow \: U_2 - U_1 = U_3 - U_2

 \small\displaystyle \tt \Rightarrow \: {n}^{2} - 4 - ( {n}^{2} - 7n + 12) = {n}^{2} - 5n + 6 - ( {n}^{2} - 4)

 \small\displaystyle \tt \Rightarrow \: {n}^{2} - 4 - {n}^{2} + 7n - 12 = {n}^{2} - 5n + 6 - {n}^{2} + 4

 \small\displaystyle \tt \Rightarrow \: 7n - 16 = {n}^{2} - 5n + 6 - {n}^{2} + 4

 \small\displaystyle \tt \Rightarrow \: 7n - 16 = - 5n + 10

 \small\displaystyle \tt \Rightarrow \: 7n + 5n = 10 + 16

 \small\displaystyle \tt \Rightarrow \: 12n = 26

 \small\displaystyle \tt \Rightarrow \: n = \frac{26}{12} = \frac{13}{6}

.

Cari beda (b) :

\displaystyle \tt \Rightarrow \:b = U_2 - U_1

\displaystyle \tt \Rightarrow \:b = {n}^{2} - 4 - ( {n}^{2} - 7n + 12)

\displaystyle \tt \Rightarrow \:b = 7n - 16

\displaystyle \tt \Rightarrow \:b = 7 \left( \frac{13}{6} \right) - 16

\displaystyle \tt \Rightarrow \:b = \frac{91}{6} - \frac{96}{6} = \boxed{ - \frac{5}{6} }

..

Pembuktian bahwa b = r₁ + r₂

\displaystyle \tt \Rightarrow \: b =r_1 + r_2

\displaystyle \tt \Rightarrow \: - \frac{5}{6} = - \frac{ 1}{2} - \frac{1}{3}

\displaystyle \tt \Rightarrow \: - \frac{5}{6} = - \frac{ 3}{6} - \frac{2}{6}

\displaystyle \tt \Rightarrow \: - \frac{5}{6} = - \frac{ 5}{6} \: \: \: \: \rightarrow \: \: sama

Semoga dengan pertanyaan yang sudah terjawab oleh unknown dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 01 Aug 22