1. Tentukan dy/dx dari : y = sin2(5x2 + 1)

Berikut ini adalah pertanyaan dari arcer1234567 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

1. Tentukan dy/dx dari : y = sin2(5x2 + 1)

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\frac{dy}{dx}dariy=sin^2(5x^2+1)adalah\boldsymbol{10xsin(10x^2+2)}.

PEMBAHASAN

Turunan atau Diferensial merupakan pengukuran terhadap bagaimana fungsi berubah seiring perubahan nilai input. Lambang untuk turunan yaitu

y',~f'(x),~\frac{dy}{dx}.

Rumus yang berlaku untuk turunan adalah sebagai berikut :

(i)~y=ax^k~~\to~~y'=kax^{k-1}

(ii)~y=f(x)\pm g(x)~~\to~~y'=f'(x)\pm g'(x)

(iii)~y=f(x)g(x)~~\to~~y'=f'(x)g(x)+f(x)g'(x)

(iv)~y=\frac{f(x)}{g(x)}~~\to~~y'=\frac{f'(x)g(x)-f(x)g'(x)}{[g(x)]^2}

Untuk turunan fungsi trigonometri :

(i)~y=sinax~~\to~~y'=acosax

(ii)~y=cosax~~\to~~y'=-asinax

(iii)~y=tanax~~\to~~y'=asec^2ax

Untuk fungsi komposisidimanay=f(u)~dan~u=g(x), turunan fungsinya dapat dicari dengan menggunakan aturan rantai, yaitu :

\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}

.

DIKETAHUI

y=sin^2(5x^2+1)

.

DITANYA

Tentukan \frac{dy}{dx}.

.

PENYELESAIAN

y=sin^2(5x^2+1), misal u=5x^2+1~\to~\frac{du}{dx}=10x

.

Fungsi menjadi :

y=sin^2u~\to~\frac{dy}{du}=2sinucosu

.

Sesuai aturan rantai :

\frac{dy}{dx}=\frac{dy}{du}\times\frac{du}{dx}

\frac{dy}{dx}=2sinucosu\times10x

\frac{dy}{dx}=10xsin2u

\frac{dy}{dx}=10xsin[2(5x^2+1)]

\frac{dy}{dx}=10xsin(10x^2+2)

.

KESIMPULAN

\frac{dy}{dx}dariy=sin^2(5x^2+1)adalah\boldsymbol{10xsin(10x^2+2)}.

.

PELAJARI LEBIH LANJUT

  1. Aturan rantai pada turunan : yomemimo.com/tugas/30207478
  2. Aturan rantai pada turunan: yomemimo.com/tugas/30194359
  3. Aturan rantai pada turunan : yomemimo.com/tugas/28963184
  4. Turunan fungsi : yomemimo.com/tugas/29244440

.

DETAIL JAWABAN

Kelas : 11

Mapel: Matematika

Bab : Turunan Fungsi

Kode Kategorisasi: 11.2.9

Kata Kunci : turunan, fungsi, komposisi, aturan, rantai.

Semoga dengan pertanyaan yang sudah terjawab oleh diradiradira dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Tue, 17 Aug 21