tolong bantu ka secepatnya pleaseee ​

Berikut ini adalah pertanyaan dari dimasputra2026 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong bantu ka secepatnya pleaseee ​
tolong bantu ka secepatnya pleaseee ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\green{\huge{1.}}

\int \left(2x^3+3x^2+x+7\right)~dx

=\frac{2}{3+1}x^{(3+1)}+\frac{3}{2+1}x^{(2+1)}+\frac{1}{1+1}x^{(1+1)}+\frac{7}{0+1}x^{(0+1)}+C

=\red{\huge{\frac{1}{2}x^4+x^3+\frac{1}{2}x^2+7x+C}}

\\

\green{\huge{2.}}

\int \left(x^2-1\right)^2~dx

=\int \left(x^4-2x^2+1\right)~dx

=\frac{1}{4+1}x^{(4+1)}-\frac{2}{2+1}x^{(2+1)}+\frac{1}{0+1}x^{(0+1)}+C

=\red{\huge{\frac{1}{5}x^5-\frac{2}{3}x^3+x+C}}

\\

\green{\huge{3.}}

\int \frac{2(x-6^2)^2}{x^5}~dx

=\int \frac{2\left(x^2-72x+1.296\right)}{x^5}~dx

=\int \frac{2x^2-144x+2.592}{x^5}~dx

=\int \left(2x^{-3}-144x^{-4}+2.592x^{-5}\right)~dx

=\frac{2}{-3+1}x^{(-3+1)}-\frac{144}{-4+1}x^{(-4+1)}+\frac{2.592}{-5+1}x^{(-5+1)}+C

=-x^{-2}+48x^{-3}-648x^{-4}+C

=\red{\huge{-\frac{1}{x^2}+\frac{48}{x^3}-\frac{648}{x^4}+C}}

=\red{\huge{\frac{-x^2+48x-648}{x^4}+C}}

\\

\green{\huge{4.}}

\int (3x+2)(x-1)~dx

=\int \left(3x^2-x-2\right)~dx

=\frac{3}{2+1}x^{(2+1)}-\frac{1}{1+1}x^{(1+1)}-\frac{2}{0+1}x^{(0+1)}+C

=\red{\huge{x^3-\frac{1}{2}x^2-2x+C}}

\\

\green{\huge{5.}}

\int \left(4x^2\sqrt{x}-3x\sqrt{x}+8\sqrt{x}\right)~dx

=\int \left(4x^\frac{5}{2}-3x^\frac{3}{2}+8x^\frac{1}{2}\right)~dx

=\frac{4}{\frac{5}{2}+1}x^{\left(\frac{5}{2}+1\right)}-\frac{3}{\frac{3}{2}+1}x^{\left(\frac{3}{2}+1\right)}+\frac{8}{\frac{1}{2}+1}x^{\left(\frac{1}{2}+1\right)}+C

=\frac{8}{7}x^\frac{7}{2}-\frac{6}{5}x^\frac{5}{2}+\frac{16}{3}x^\frac{3}{2}+C

=\red{\huge{\frac{8}{7}x^3\sqrt{x}-\frac{6}{5}x^2\sqrt{x}+\frac{16}{3}x\sqrt{x}+C}}

\\

\green{\huge{6.}}

\int 2\sqrt{x}~dx=\int 2x^\frac{1}{2}~dx

=\frac{2}{\frac{1}{2}+1}x^{\left(\frac{1}{2}+1\right)}+C=\frac{4}{3}x^\frac{3}{2}+C

=\red{\huge{\frac{4}{3}x\sqrt{x}+C}}

\\

\green{\huge{7.}}

Dimisalkan : u=2x+1

\frac{du}{dx}=2~\to dx=\frac{1}{2}~du

Maka :

\int (2x+1)^4~dx=\int u^4~\frac{1}{2}~du

=\frac{1}{2}\times \frac{1}{4+1}u^{(4+1)}+C

=\frac{1}{10}u^5+C

=\red{\huge{\frac{1}{10}(2x+1)^5+C}}

\\

\green{\huge{8.}}

Dimisalkan : u=4x^3-7

\frac{du}{dx}=12x^2~\to dx=\frac{1}{12x^2}~du

Maka :

\int \frac{48x^2}{\sqrt{4x^3-7}}~dx

=\int \frac{48x^2}{u^\frac{1}{2}}~\frac{1}{12x^2}~du

=\int 4u^{-\frac{1}{2}}~du

=\frac{4}{-\frac{1}{2}+1}u^{\left(-\frac{1}{2}+1\right)}+C

=8u^\frac{1}{2}+C

=\red{\huge{8\sqrt{4x^3-7}+C}}

\\

\green{\huge{9.}}

\begin{array}{lll}f(x)&=&\int f'(x)~dx\\~\\&=&\int \left(3x^2-5x+1\right)~dx\\~\\&=&\frac{3}{2+1}x^{(2+1)}-\frac{5}{1+1}x^{(1+1)}+\frac{1}{0+1}x^{(0+1)}+C\\~\\&=&x^3-\frac{5}{2}x^2+x+C\end{array}

Diketahui : f(1)=\frac{7}{2}

\begin{array}{rcl}1^3-\frac{5}{2}.\left(1^2\right)+1+C&=&\frac{7}{2}\\~\\1-\frac{5}{2}+1+C&=&\frac{7}{2}\\~\\\frac{1}{2}+C&=&\frac{7}{2}\\~\\C&=&3\end{array}

Sehingga :

\red{\huge{f(x)=x^3-\frac{5}{2}x^2+x+3}}

\\

\green{\huge{10.}}

\begin{array}{lll}f'(x)&=&\int f"(x)~dx\\~\\&=&\int (6x+8)~dx\\~\\&=&\frac{6}{1+1}x^{(1+1)}+\frac{8}{0+1}x^{(0+1)}+C_1\\~\\&=&3x^2+4x+C_1\end{array}

\begin{array}{rcl}f'(3)&=&7\\~\\3.\left(3^2\right)+4.(3)+C_1&=&7\\~\\27+12+C_1&=&7\\~\\C_1&=&-32\end{array}

f'(x)=3x^2+4x-32

\begin{array}{lll}f(x)&=&\int f'(x)~dx\\~\\&=&\int \left(3x^2+4x-32\right)~dx\\~\\&=&\frac{3}{2+1}x^{(2+1)}+\frac{4}{1+1}x^{(1+1)}-\frac{32}{0+1}x^{(0+1)}+C_2\\~\\&=&x^3+2x^2-32x+C_2\end{array}

\begin{array}{rcl}f(0)&=&5\\~\\0^3+2.\left(0^2\right)-32.(0)+C_2&=&5\\~\\C_2&=&5\end{array}

\red{\huge{f(x)=3x^2+4x-32x+5}}

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 21 Aug 21