Berikut ini adalah pertanyaan dari ekaramadhan16 pada mata pelajaran Matematika untuk jenjang Sekolah Dasar
Deret bilangan :1. tentukanlah nilai x jika suku barisan x - 4, 2x + 1, 10 + x, merupakan suku suku yang membentuk dari aritmetika .
2. Suatu barisan geometri memiliki suku pertama 3 dan rasio 4.
a. tuliskan barisan geometri tsb.
b. tuliskan deret geometri tsb.
3. Tentukanlah jumlah setiap deret geometri berikut.
a. 2+6+18+54+162+...+U7
b. 3+15+75+...+U6
c. 1+4+16+64+...+U7
d. 5+10+20+40+80+...+U8
e. 1/4+1/2+1+2+...+U10
4. Dik suatu deret geometri memiliki suku ketiga 18 dan suku kelima 162. tentukanlah:
a. rasio deret geometri tsb,
b. suku kedelapan deret geometri tsb,
c. jumlah delapan suku pertama deret geometri tsb.
5. Diketahui suatu barisan 1+ x, 10, x+16. tentukan nilai x agar suku barisan tersebut menjadi deret geometri.
6. tentukanlah n jika
a. 2+4+8+16+32+...+n = 510
b. 3+9+27+...+n= 120
c.1+2+4+8+...+n=1.023
d.3+6+12+...+n=765
e.2+6+18+...+n= 242
2. Suatu barisan geometri memiliki suku pertama 3 dan rasio 4.
a. tuliskan barisan geometri tsb.
b. tuliskan deret geometri tsb.
3. Tentukanlah jumlah setiap deret geometri berikut.
a. 2+6+18+54+162+...+U7
b. 3+15+75+...+U6
c. 1+4+16+64+...+U7
d. 5+10+20+40+80+...+U8
e. 1/4+1/2+1+2+...+U10
4. Dik suatu deret geometri memiliki suku ketiga 18 dan suku kelima 162. tentukanlah:
a. rasio deret geometri tsb,
b. suku kedelapan deret geometri tsb,
c. jumlah delapan suku pertama deret geometri tsb.
5. Diketahui suatu barisan 1+ x, 10, x+16. tentukan nilai x agar suku barisan tersebut menjadi deret geometri.
6. tentukanlah n jika
a. 2+4+8+16+32+...+n = 510
b. 3+9+27+...+n= 120
c.1+2+4+8+...+n=1.023
d.3+6+12+...+n=765
e.2+6+18+...+n= 242
Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
jawaban soal nomer 1
beda barisan aritmatika
b₁ = U₂ - U₁
= 2x + 1 - ( x - 4)
= 2x + 1 - x + 4
= x + 5
menentukan nilai x
U₃ = a + (n - 1) b
10 + x = x - 4 + (3-1) (x+5)
10 + x = x - 4 + 2(x+5)
10 + x = x - 4 + 2x +10
10 + x = 3x + 6
10 - 6 = 3x - x
4 = 2x
4/2 = x
2 = x
jawaban soal nomer 2
U₁ = 3
U₂ = 3 x 4 = 12
U₃ = 12 x 4 = 48
U₄ = 48 X 4 = 192
U₅ = 192 x 4 = 768
bagian soal a ( barisan )
U₁, U₂, U₃, U₄, U₅ ...... = 3, 12, 48, 192, 768, .....
bagian soal B ( deret)
U₁ + U₂ + U₃+ U₄+ U₅ + ...... = 3 + 12 + 48 + 192 + 768 + .....
jawaban soal nomer 3
bagian soal A
a = 2
r = 6/2
= 3
jumlah 7 suku pertamanya
jawaban bagian B
a = 3
r = 15/3
= 5
jumlah 6 suku pertamanya adalah
jawaban bagian C
a = 1
r = 4/1
= 4
jumlah 7 suku pertamanya adalah
jawaban bagian D
a = 5
r = 10/5
= 5
jumlah 8 suku pertamanya
jawaban bagian E
a = 1/4
r = 1/2 : 1/4
= 1/2 x 4/1
= 2
jumlah 10 suku pertamanya
jawaban soal nomer 4
bagian soal A
untuk suku kelima
U₅ = arⁿ⁻¹
162 = ar⁵⁻¹
162 = ar⁴
untuk suku ketiga
U₃ = arⁿ⁻¹
18 = ar³⁻¹
18 = ar²
bagi suku ke 5 oleh suku ke 3 keduanya
ar⁴ = 162
ar² = 18
r² = 9
r = √9
r = 3
jawaban bagian B
ar² = 18
a x 3² = 18
a x 9 = 18
a = 18/9
a = 2
maka suku ke delapan adalah
U₈ = a x rⁿ⁻¹
= 2 x 3⁸⁻¹
= 2 x 3⁷
= 2 x 2187
= 4374
jawaban bagian C
jawaban soal nomer 5
U₂/U₁ = U₃/U₂
U₂ x U₂ = U₁ x U₃
(10)(10) = (1 + x)(x + 16)
100 = x + 16 + x² + 16x
x² + 17x + 16 - 100 = 0
x² + 17x - 84 = 0
faktorkan
(x + 21)(x - 4) = 0
x = -21 atau x = 4
jawaban soal nomer 6
jawaban bagian A
a = 2
r = 4/2
= 2
sn = 510
maka banyak suku adalah
jawaban bagian B
a = 3
r = 9/3
= 3
Sn = 120
banyak suku pertmanya
jawaban soal bagian C
a = 1
r = 2
banyak suku pertamnya adalah
beda barisan aritmatika
b₁ = U₂ - U₁
= 2x + 1 - ( x - 4)
= 2x + 1 - x + 4
= x + 5
menentukan nilai x
U₃ = a + (n - 1) b
10 + x = x - 4 + (3-1) (x+5)
10 + x = x - 4 + 2(x+5)
10 + x = x - 4 + 2x +10
10 + x = 3x + 6
10 - 6 = 3x - x
4 = 2x
4/2 = x
2 = x
jawaban soal nomer 2
U₁ = 3
U₂ = 3 x 4 = 12
U₃ = 12 x 4 = 48
U₄ = 48 X 4 = 192
U₅ = 192 x 4 = 768
bagian soal a ( barisan )
U₁, U₂, U₃, U₄, U₅ ...... = 3, 12, 48, 192, 768, .....
bagian soal B ( deret)
U₁ + U₂ + U₃+ U₄+ U₅ + ...... = 3 + 12 + 48 + 192 + 768 + .....
jawaban soal nomer 3
bagian soal A
a = 2
r = 6/2
= 3
jumlah 7 suku pertamanya
jawaban bagian B
a = 3
r = 15/3
= 5
jumlah 6 suku pertamanya adalah
jawaban bagian C
a = 1
r = 4/1
= 4
jumlah 7 suku pertamanya adalah
jawaban bagian D
a = 5
r = 10/5
= 5
jumlah 8 suku pertamanya
jawaban bagian E
a = 1/4
r = 1/2 : 1/4
= 1/2 x 4/1
= 2
jumlah 10 suku pertamanya
jawaban soal nomer 4
bagian soal A
untuk suku kelima
U₅ = arⁿ⁻¹
162 = ar⁵⁻¹
162 = ar⁴
untuk suku ketiga
U₃ = arⁿ⁻¹
18 = ar³⁻¹
18 = ar²
bagi suku ke 5 oleh suku ke 3 keduanya
ar⁴ = 162
ar² = 18
r² = 9
r = √9
r = 3
jawaban bagian B
ar² = 18
a x 3² = 18
a x 9 = 18
a = 18/9
a = 2
maka suku ke delapan adalah
U₈ = a x rⁿ⁻¹
= 2 x 3⁸⁻¹
= 2 x 3⁷
= 2 x 2187
= 4374
jawaban bagian C
jawaban soal nomer 5
U₂/U₁ = U₃/U₂
U₂ x U₂ = U₁ x U₃
(10)(10) = (1 + x)(x + 16)
100 = x + 16 + x² + 16x
x² + 17x + 16 - 100 = 0
x² + 17x - 84 = 0
faktorkan
(x + 21)(x - 4) = 0
x = -21 atau x = 4
jawaban soal nomer 6
jawaban bagian A
a = 2
r = 4/2
= 2
sn = 510
maka banyak suku adalah
jawaban bagian B
a = 3
r = 9/3
= 3
Sn = 120
banyak suku pertmanya
jawaban soal bagian C
a = 1
r = 2
banyak suku pertamnya adalah
Semoga dengan pertanyaan yang sudah terjawab oleh 5dregensleyer dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Tue, 22 Apr 14