Kuiz siang // 10 poin Soal : 1. 23! 2. 5! × 3!

Berikut ini adalah pertanyaan dari helenhelena0510 pada mata pelajaran Matematika untuk jenjang Sekolah Dasar

Kuiz siang // 10 poinSoal :

1. 23!
2. 5! × 3! = ....
3. 90 ÷ 6 = .....
4. 9,80 × 6,34 = ......
5. Berapa hasil dari 5! × 789 = ....


Note 1 :
- jika mau jawab harus benar
- harus ada cara
- jika tidak ada cara saya repot
- jangan minta² jawaban terbaik yah

Note 2 :

Ada yang mau cp pp kah ?

Kalau mau pakai pp di bawah ini
Kuiz siang // 10 poin
Soal :
1. 23!
2. 5! × 3! = ....
3. 90 ÷ 6 = .....
4. 9,80 × 6,34 = ......
5. Berapa hasil dari 5! × 789 = ....
Note 1 :
- jika mau jawab harus benar
- harus ada cara
- jika tidak ada cara saya repot
- jangan minta² jawaban terbaik yah
Note 2 :
Ada yang mau cp pp kah ?
Kalau mau pakai pp di bawah ini

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Hai! Selamat Siang, Mari Saya Bantu Menjawab! :)

____________

Pendahuluan

Terdapat empat Operasi hitung aritmatika dasar yaitu Penjumlahan, Pengurangan, Perkalian, Dan Pembagian.

1. Penjumlahan

  • Penjumlahan adalah salah satu Operasi hitung aritmatika dasar. Penjumlahan adalah penambahan suatu bilangan atau lebih menjadi suatu bilangan yang disebut jumlah. Penjumlahan ditandai dengan tanda plus (+).

Contoh :

Terdapat Lima buah apel di sebelah kanan, Dan dua Buah apel di sebelah kiri. Maka berapa banyak jumlah buah apel semuanya?

Penyelesaian :

= 5 buah apel + 2 buah apel

= 7 buah apel

Ada beberapa sifat yang dimiliki Oleh Penjumlahan yaitu :

  • Sifat Komutatif = Sifat pertukaran tempat : x + y = y + x
  • Sifat Asosiatif = Sifat pengelompokan :(x + y) + z = x + (y + z)
  • Sifat Distributif = Sifat penyebaran atau penggabungan : (x + y) × z = x × z + y × z

2. Pengurangan

  • Pengurangan merupakan salah satu operasi aritmatika dasar. Pengurangan mewakili operasi yang menghapus objek dari koleksi. Pengurangan ditandai dengan tanda minus (-).

Pengurangan dapat dilakukan dengan bilangan bulat positif dan bilangan bulat negatif. terdapat dua cara melakukan operasi pengurangan, antara lain :

  • Dengan Menggunakan garis bilangan.
  • Dengan menggunakan pengurangan bersusun.

Contoh :

Terdapat 6 potong kue, lalu dimakan 3 potong kue. Berapa sisa potong kue yang masih ada?

Penyelesaian :

= 6 - 3 (dibaca enam dikurang tiga)

= |||||| - |||

= |||

= 3  

  • Jadi, terdapat 3 potong kue yang masih ada.

3. Perkalian

  • Perkalian adalah salah satu Operasi aritmatika dasar. Secara sederhana Perkalian adalah penjumlahan berulang. Perkalian ditandai dengan tanda "×".

Rumus Perkalian yaitu :

  • a × b = b + b + ... a + b

(b dijumlahkan sebanyak a)

Contoh :

  • 5 × 3 = 3 + 3 + 3 + 3 + 3 = 15

(3 dijumlahan sebanyak 5 kali)

Ada beberapa Sifat Perkalian yaitu :

  • Sifat Komutatif = Sifat pertukaran tempat : x × y = y × x
  • Sifat Asosiatif = Sifat pengelompokan : (x × y) × z = x × (y × z)
  • Sifat Distributif = Sifat penyebaran atau penggabungan : x × (y + z) = x × y + x × z

4. Pembagian

  • Pembagian adalah salah satu dari operasi aritmatika dasar yang merupakan kebalikan dari perkalian. Operasi pembagian digunakan untuk menghitung hasil bagi suatu bilangani terhadap pembaginya. Operasi pembagian menggunakan simbol "÷" atau "/".

Jika dalam perkalian, diketahui bahwa :

  • c × b = a

tetapi, dalam operasi pembagian dapat diubah menjadi :

  • a ÷ b = c

Dimana :

→ a disebut dengan angka yang dibagi

→ b disebut dengan pembagi

→ c disebut dengan hasil pembagian

Contoh :

  • 9 ÷ 3 = 3 Karena 3 × 3 = 9

Pembagian juga bisa dilakukan dengan cara porograpit, atau yang lebih dikenal dengan pembagian bersusun.

Ada beberapa hal yang harus diperhatikan ketika melakukan operasi hitung, yaitu :

  • Operasi hitung yang berada dalam tanda kurung dikerjakan terlebih dahulu.

Jika ada perkalian (×) atau pembagian (÷) pada penjumlahan (+) atau pengurangan (-), maka kerjakan terlebih dahulu perkalian (×) atau pembagian (÷) tersebut.

Setelah itu, kerjakan operasi hitung Penjumlahan (+) dan Pengurangan (-). b disebut dengan pembagi

— Faktorial

  • Faktorial adalah perkalian berurutan dari angka yang di faktorial kan ke angka yang sebelumnya sampai angka satu, atau juga bisa perkalian berurutan dari angka satu sampai angka yang di faktorialkan.

Rumus Faktorial :

\boxed{\bf n! = n \times (n - 1) \times (n - 2) \times ( n - 3 ) \times 3 \times 2 \times 1}

____________

★ Pembahasan

  • 9! =

= ( 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1 )

= ( 72 × 7 × 6 × 5 × 4 × 3 × 2 × 1 )

= ( 504 × 6 × 5 × 4 × 3 × 2 × 1 )

= ( 3.024 × 5 × 4 × 3 × 2 × 1 )

= ( 15.120 × 4 × 3 × 2 × 1 )

= ( 60.480 × 3 × 2× 1 )

= ( 181.440 × 2 × 1 )

= ( 362.880 × 1 )

= 362.880

Keterangan No. 1 = Pada Soal No. 1 Saya Jawab 9! Karena Pembuat Soal Mengganti Soal Ini Menjadi 9!.

  • 5! × 3! =

= ( 5 × 4 × 3 × 2 × 1 ) × ( 3 × 2× 1 )

= 120 × 9

= 1.080

  • 90 ÷ 6 =

= 15

  • Pembuktian :

- 6 × 15

= 90

  • 9,80 × 6,34 =

= 62,132

  • Hasil Dari 5! × 789 =

= ( 5 × 4 × 3 × 2 × 1 ) × 789

= 120 × 789

= 94.680

~Kesimpulan

  • 9! = 362.880.
  • 5! × 3! = 1.080.
  • 90 ÷ 6 = 15.
  • 9,80 × 6,34 = 33,51600.
  • 5! × 789 = 94.680.

________________

Learn More :

________________

Detail Jawaban

  • Mapel : Matematika
  • Kelas : 3
  • Bab : Bab 4 - Operasi Hitung
  • Kode soal : 2
  • Kode kategorisasi : 3.2.1
  • Kata kunci : Faktorial, Pembagian, Perkalian

- Arinxia -

Semoga dengan pertanyaan yang sudah terjawab oleh Rovy10 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Wed, 13 Apr 22