. Bayangan titik A(6, 4) karena percerminan garis y=x adalah

Berikut ini adalah pertanyaan dari adjicollection6 pada mata pelajaran Matematika untuk jenjang Sekolah Dasar

. Bayangan titik A(6, 4) karena percerminan garis y=x adalah ... . ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Bayangan titik A(6,4) karena pencerminan garis y = x adalah (4,6).

Pendahuluan :

\bf \blacktriangleright Pengertian:

Transformasi Geometri adalah ilmu matematika yang mempelajari perpindahan atau perubahan bentuk. Transformasi geometri terdiri dari : translasi, refleksi, dilatasi, dan rotasi.

 \\

\bf \blacktriangleright 1. Translasi~(pergeseran) :

•Terhadap Titik

\rm K(x,y) \xrightarrow{T\binom{a}{b}} K'(x+a,y+b)

•Terhadap Garis :

Persamaan garis umumnya : ax+by+c = 0. Apabila ditranslasi oleh \rm \binom{c}{d} maka rumusnya :

 \rm a(x'-c)+b(y'-d)+c = 0

Setelah mendapat hasilnya, maka tanda aksen (koma atas) bisa dihilangkan.

 \\

\bf \blacktriangleright 2. Refleksi~(pencerminan) :

•Terhadap sumbu X :

 \rm K(x,y)\xrightarrow{M_x} K'(x,-y)

•Terhadap sumbu Y :

 \rm K(x,y)\xrightarrow{M_y} K'(-x,y)

•Terhadap x = h :

 \rm K(x,y)\xrightarrow{M_{x=h}} K'(2h-x,y)

•Terhadap y = k :

 \rm K(x,y)\xrightarrow{M_{y=k}} K'(x,2k-y)

•Terhadap y = x :

 \rm K(x,y)\xrightarrow{M_{y=x}} K'(y,x)

•Terhadap y = -x :

 \rm K(x,y)\xrightarrow{M_{y=-x}} K'(-y,-x)

•Terhadap titik (0,0) :

 \rm K(x,y)\xrightarrow{M_{(0,0)}} K'(-x,-y)

 \\

 \bf \blacktriangleright 3. Dilatasi~(perubahan~ukuran):

•Pusat di O (0,0) :

 \rm K(x,y) \xrightarrow{D[(0,0),k]} K'(kx,ky)

•Pusat di (a,b) :

 \rm K(x,y) \xrightarrow{D[(a,b),k]} K'(k(x-a)+a,k(y-b)+b)

\\

 \bf \blacktriangleright 4. Rotasi~(perputaran) :

•Pusat Rotasi (0,0) , α = 90° = -270°:

 \rm K(x,y) \xrightarrow{R[(0,0),90^o]} K'(-y,x)

•Pusat Rotasi (0,0) , α = 180° = -180° :

 \rm K(x,y) \xrightarrow{R[(0,0),180^o]} K'(-x,-y)

•Pusat Rotasi (0,0) , α = 270° = -90° :

 \rm K(x,y) \xrightarrow{R[(0,0),270^o]} K'(y,-x)

•Pusat Rotasi (a,b) , α = 90° = -270° :

 \rm K(x,y) \xrightarrow{R[(a,b),90^o]} K'(-(y-b)+a,(x-a)+b)

•Pusat Rotasi (a,b) , α = 180° = -180° :

 \rm K(x,y) \xrightarrow{R[(a,b),180^o]} K'(-(x-a)+a, -(y-b)+b)

•Pusat Rotasi (a,b) , α = 270° = -90° :

 \rm K(x,y) \xrightarrow{R[(a,b),270^o]} K'((y-b)+a,-(x-a)+b)

Pembahasan :

Diketahui :

Titik A(6,4) dicerminkan dengan garis y = x

Ditanya :

Hasil bayangan?

Jawab :

 \rm A(x,y)\xrightarrow{M_{y=x}} A'(y,x)

 \rm A(6,4)\xrightarrow{M_{y=x}} A'(4,6)

Kesimpulan :

Jadi, hasil bayangannya adalah (4,6)

Pelajari Lebih Lanjut :

1) Translasi

2) Refleksi

3) Dilatasi

4) Rotasi

5) Translasi Dilanjutkan Dengan Dilatasi

Detail Jawaban :

  • Kelas : 11
  • Mapel : Matematika
  • Materi : Transformasi Geometri
  • Kode Kategorisasi : 11.2.1.1
  • Kata Kunci : Titik, Pencerminan

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 14 Feb 22