Kerjakanlah soal-soal berikut dengan benar dan tepat! 1. Tentukan kemiringan

Berikut ini adalah pertanyaan dari risaramadhani177 pada mata pelajaran Matematika untuk jenjang Sekolah Dasar

Kerjakanlah soal-soal berikut dengan benar dan tepat! 1. Tentukan kemiringan garis dari persamaan berikut. a) y = 3x + 1 b) 4x + 2y - 3=0​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Jawaban:

Terdapat dua cara untuk mencari nilai gradien suatu garis yang bisa kamu ketahui, yaitu:

I. Jika diketahui bentuk persamaan garisnya

Secara umum, bentuk persamaan garis lurus ada dua macam, sehingga cara untuk menentukan gradiennya juga berbeda beda, tergantung dari bentuk persamaan garisnya.

a. Persamaan garis y = mx + c

Pada persamaan garis ini, gradien dapat dicari dengan mudah, Squad. Kenapa? Karena gradiennya adalah koefisien dari variabel x itu sendiri, yaitu m.

Contoh:

Garis y = 3x + 2, koefisien x adalah 3. Jadi, gradien garis tersebut adalah 3.

Garis y = -2x + 8, koefisien x adalah -2. Jadi, gradien garis tersebut adalah -2.

b. Persamaan garis ax + by + c = 0

Jika diketahui persamaan garis ax + by + c = 0, maka langkah pertama yang harus kamu lakukan adalah ubah persamaan garis tersebut ke bentuk y = mx + c, dengan m adalah gradien garis tersebut. Di sini, kamu harus perhatikan tanda +/- dari koefisien masing-masing variabelnya, ya. Soalnya, tanda +/- akan berubah ketika kita pindah ruas persamaannya. Nah, kalau kamu merasa bingung, coba perhatikan contoh soal di bawah ini, ya.

Contoh:

1. Hitunglah kemiringan (gradien) pada persamaan garis berikut:

a) 5x + 2y - 8 = 0

b) 2x - 3y = 7

Penyelesaian:

a) Pertama-tama, kita ubah dulu persamaan 5x + 2y - 8 = 0 ke bentuk y = mx + c, sehingga persamaannya menjadi,

5x + 2y - 8 = 0

2y = -5x + 8

Koefisien x bernilai positif, yaitu 5, sehingga setelah kita pindah ruas ke kanan akan bernilai negatif. Begitu juga dengan konstanta -8 yang berubah tanda menjadi 8 karena pindah ruas ke kanan. Selanjutnya, kita bagi kedua ruas dengan 2.

y = (-5/2)x + 4

Jadi, gradien dari persamaan garis tersebut adalah -5/2.

Gimana? Kamu paham nggak sampai sini? Oke, supaya kamu semakin paham, coba kamu kerjakan contoh poin b. Terus, jawabannya kamu share deh di kolom komentar. Ditunggu ya jawabannya!

II. Jika diketahui dua titik yang dilalui garis

Jika diketahui dua titik yang dilalui suatu garis lurus, misalnya (x1,y1) dan (x2,y2), maka gradiennya dapat diperoleh dengan rumus m = ∆y/∆x = (y2-y1)/(x2-x1). Contoh soalnya seperti ini, Squad.

Contoh:

Perhatikan gambar berikut:

rumus mencari gradien

Gradien garis k pada gambar adalah...

Penyelesaian:

Diketahui dua buah titik yang dilalui oleh garis k, yaitu (4,0) dan (0,6). Misalnya kita pilih (x1,y1) = (4,0) dan (x2,y2) = (0,6), gradien garis tersebut dapat dicari menggunakan rumus m = ∆y/∆x = (y2-y1)/(x2-x1).

rumus mencari gradien

Jadi, gradien garis tersebut adalah -3/2. Di sini kamu bebas untuk memilih titik mana yang jadi (x1,y1) dan titik mana yang jadi (x2,y2) ya karena hasilnya akan sama saja.

Semoga dengan pertanyaan yang sudah terjawab oleh komarasani1518 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 07 Feb 22