Berikut ini adalah pertanyaan dari pakaibaru123 pada mata pelajaran Fisika untuk jenjang Sekolah Menengah Atas

Jawaban dan Penjelasan
Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.
Use graph paper to determine the magnitude of displacement of a car that travels :
A. 10 km due south, 2 km due west, then 5 km due east.
B. 10 km due east and then 12 km at 45° north of west.
A. The magnitude of displacement is 10.44 km.
The direction of displacement is 286.7° from x axes positive.
B. The magnitude of displacement is 20.35 km.
The direction of displacement is 24.66° from x axes positive.
Penjelasan dengan langkah-langkah:
Diketahui:
- A. d₁ = 10 km
θ₁ = 270° from x axes positive
d₂ = 2 km
θ₂ = 180°
d₃ = 5 km
θ₃ = 0° - B. d₁ = 10 km
θ₁ = 0° from x axes positive
d₂ = 12 km
θ₂ = 45°
Ditanyakan:
- Magnitude?
- Direction?
Jawaban:
A. Look each distance in x-axes and y-axes.
- d₁ = 10 km and θ₁ = 270°
= 0 km
= - 10 km
- d₂ = 2 km and θ₂ = 180°
= - 2 km
= 0 km
- d₃ = 5 km and θ₃ = 0°
= 5 km
= 0 km
Displacement in x-axes and y-axes.
dₓ = 3 km
dy = - 10 km
Magnitude of displacement
d = 10.44 km- Direction
θ = 286.7°
B. Look each distance in x-axes and y-axes.
- d₁ = 10 km and θ₁ = 0°
= 10 km
= 0 km
- d₂ = 12 km and θ₂ = 45°
= 8.49 km
= 8.49 km
Displacement in x-axes and y-axes.
dₓ = 18.49 km
dy = 8.49 km
Magnitude of displacement
d = 20.35 km- Direction
θ = 24.66°
Pelajari lebih lanjut
- Pelajari lebih lanjut tentang Resultan Tiga Vektor yomemimo.com/tugas/12527736
#BelajarBersamaBrainly
#SPJ1
![Use graph paper to determine the magnitude of displacement of a car that travels : A. 10 km due south, 2 km due west, then 5 km due east.B. 10 km due east and then 12 km at 45° north of west.A. The magnitude of displacement is 10.44 km.The direction of displacement is 286.7° from x axes positive.B. The magnitude of displacement is 20.35 km.The direction of displacement is 24.66° from x axes positive.Penjelasan dengan langkah-langkah:Diketahui:A. d₁ = 10 kmθ₁ = 270° from x axes positived₂ = 2 km θ₂ = 180°d₃ = 5 kmθ₃ = 0°B. d₁ = 10 kmθ₁ = 0° from x axes positived₂ = 12 km θ₂ = 45°Ditanyakan:Magnitude?Direction?Jawaban:A. Look each distance in x-axes and y-axes.d₁ = 10 km and θ₁ = 270°[tex]d_{1x} \:=\: d_1 \: cos \: 270^o \:=\: 10 \times 0[/tex] = 0 km[tex]d_{1y} \:=\: d_1 \: sin \: 270^o \:=\: 10 \times - 1[/tex] = - 10 kmd₂ = 2 km and θ₂ = 180°[tex]d_{2x} \:=\: d_2 \: cos \: 180^o \:=\: 2 \times - 1[/tex] = - 2 km[tex]d_{2y} \:=\: d_2 \: sin \: 180^o \:=\: 2 \times 0[/tex] = 0 kmd₃ = 5 km and θ₃ = 0°[tex]d_{3x} \:=\: d_3 \: cos \: 0^o \:=\: 5 \times 1[/tex] = 5 km[tex]d_{3y} \:=\: d_3 \: sin \: 0^o \:=\: 5 \times 0[/tex] = 0 kmDisplacement in x-axes and y-axes.[tex]d_x \:=\: d_{1x} \:+\: d_{2x} \:+\: d_{3x}[/tex][tex]d_x \:=\: 0 \:+\: (- 2) \:+\: 5[/tex]dₓ = 3 km[tex]d_y \:=\: d_{1y} \:+\: d_{2y} \:+\: d_{3y}[/tex][tex]d_y \:=\: (- 10) \:+\: 0 \:+\: 0[/tex]dy = - 10 kmMagnitude of displacement[tex]d^2 \:=\: d_x^2 \:+\: d_y^2[/tex][tex]d^2 \:=\: 3^2 \:+\: (- 10)^2[/tex][tex]d^2 \:=\: 9 \:+\: 100[/tex][tex]d^2 \:=\: 109[/tex][tex]d \:=\: \sqrt{109}[/tex]d = 10.44 kmDirection[tex]tan \: \theta \:=\: \frac{d_y}{d_x}[/tex][tex]tan \: \theta \:=\: \frac{- 10}{3}[/tex][tex]\theta \:=\: tan^{- 1} \: - 3.33[/tex][tex]\theta \:=\: - 73.3^o[/tex][tex]\theta \:=\: 360^o \:-\: 73.3^o[/tex]θ = 286.7°B. Look each distance in x-axes and y-axes.d₁ = 10 km and θ₁ = 0°[tex]d_{1x} \:=\: d_1 \: cos \: 0^o \:=\: 10 \times 1[/tex] = 10 km[tex]d_{1y} \:=\: d_1 \: sin \: 0^o \:=\: 10 \times 0[/tex] = 0 kmd₂ = 12 km and θ₂ = 45°[tex]d_{2x} \:=\: d_2 \: cos \: 45^o \:=\: 12 \times \frac{1}{2} \sqrt{2}[/tex] = 8.49 km[tex]d_{2y} \:=\: d_2 \: sin \: 45^o \:=\: 12 \times \frac{1}{2} \sqrt{2}[/tex] = 8.49 kmDisplacement in x-axes and y-axes.[tex]d_x \:=\: d_{1x} \:+\: d_{2x}[/tex][tex]d_x \:=\: 10 \:+\: 8.49[/tex]dₓ = 18.49 km[tex]d_y \:=\: d_{1y} \:+\: d_{2y}[/tex][tex]d_y \:=\: 0 \:+\: 8.49[/tex]dy = 8.49 kmMagnitude of displacement[tex]d^2 \:=\: d_x^2 \:+\: d_y^2[/tex][tex]d^2 \:=\: 18.49^2 \:+\: 8.49^2[/tex][tex]d^2 \:=\: 341.8801 \:+\: 72.0801[/tex][tex]d^2 \:=\: 413.9602[/tex][tex]d \:=\: \sqrt{413.9602}[/tex]d = 20.35 kmDirection[tex]tan \: \theta \:=\: \frac{d_y}{d_x}[/tex][tex]tan \: \theta \:=\: \frac{8.49}{18.49}[/tex][tex]\theta \:=\: tan^{- 1} \: 0.459[/tex]θ = 24.66°Pelajari lebih lanjutPelajari lebih lanjut tentang Resultan Tiga Vektor https://brainly.co.id/tugas/12527736#BelajarBersamaBrainly#SPJ1](https://id-static.z-dn.net/files/d57/8ac552cac688d7774da1322cf446b569.jpg)
Semoga dengan pertanyaan yang sudah terjawab oleh wiyonopaolina dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.
Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact
Last Update: Sun, 27 Nov 22