Misalkan sebuah elektron(bermuatan e-) dapat mengorbit proton (bermuatan +e) dalam

Berikut ini adalah pertanyaan dari afhar015 pada mata pelajaran Fisika untuk jenjang Sekolah Menengah Atas

Misalkan sebuah elektron(bermuatan e-) dapat mengorbit proton (bermuatan +e) dalam orbit lingkaran dengan radius konstan R dengan asumsi bahwa proton diam dan hanya gaya elektrostatik yang bekerja pada partikel manakah dari berikut ini yang menunjukkan energi kinetik dari sistem dua partikel? ​
Misalkan sebuah elektron(bermuatan e-) dapat mengorbit proton (bermuatan +e) dalam orbit lingkaran dengan radius konstan R dengan asumsi bahwa proton diam dan hanya gaya elektrostatik yang bekerja pada partikel manakah dari berikut ini yang menunjukkan energi kinetik dari sistem dua partikel? ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Nilai energi kinetik dari sistem dua partikel tersebut, yaitu:

\bf \dfrac{1}{8\pi \epsilon_0}\dfrac{e^2}{R}

Adapun keterangan dari rumus di atas:

  • π = 3,14 atau 22 : 7.
  • ε₀ = permitivitas vakum.
  • e = besar muatan partikel elektron.
  • R = jarak antara elektron yang mengorbit dan proton.

Ingat, asumsi bahwa elektron memiliki orbital tetap dan proton diam.

Penjelasan dengan langkah-langkah

Diketahui:

  • Partikel elektron mengelilingi proton.
  • Proton (+)
    Elektron (-)
  • Muatan proton = +e.
  • Mutan elektron = -e.
  • Jarak proton ke elektron:
    r = R.
  • Asumsi:
    Nilai r selalu tetap.

Ditanyakan:

Ek = energi kinetik = ?

Penyelesaian:

Langkah 1
Perhitungan kecepatan partikel elektron.

  • Pada elektron bekerja gaya sentripetal karena elektron mengorbit proton di mana arah gaya ke dalam orbit (proton).
  • Pada elektron juga bekerja gaya electrostatic karena adanya interaksi tarik menarik antara dua partikel beda muatan.
  • Maka:
    \begin{array}{ll} \sf Fs &\sf = Fm\\\\\sf \dfrac{m\times v^2}{r}&\sf =k\dfrac{(-e)^2}{r^2}\\\\\sf v^2&\sf = k\dfrac{e^2\times r}{m\times r^2}\\\\&\sf =k \dfrac{e^2}{mR} \end{array}
  • Keterangan:
    m = massa partikel elektron.
    e = muatan partikel elektron.
    Fm = gaya elektromagnetik.
    Fs = gaya sentripetal.
    r = jarak elektron ke pusat orbital = R.

Langkah 2
Perhitungan energi kinetik pada sistem dua partikel.

\begin{array}{ll} \sf Ek&\sf = \dfrac{1}{2}\times m\times v^2\\\\&\sf = \dfrac{1}{2}\times m \times k\dfrac{e^2}{mR}\\\\&\sf =\dfrac{k\times e^2}{2R} \end{array}

Keterangan:

  • Ek = energi kinetik.
  • m = massa partikel elektron.
  • v = kecepatan putar partikel elektron.
  • e = muatan partikel elektron.
  • k = tetapan Coulomb.
    Nilai k = 1 : (4πε₀)

Maka:

\begin{array}{ll} \sf Ek &\sf = \dfrac{1\times e^2}{(4\times \pi\times \epsilon_0)2R}\\\\&\sf = \dfrac{1}{8 \pi \epsilon_0}\dfrac{e^2}{R}\end{array}

Kesimpulan

Jawaban yang tepat adalah A.

Pelajari lebih lanjut

Materi tentang perhitungan kecepatan gerak elektron lain pada yomemimo.com/tugas/25064516

#SolusiBrainlyCommunity

Nilai energi kinetik dari sistem dua partikel tersebut, yaitu:[tex]\bf \dfrac{1}{8\pi \epsilon_0}\dfrac{e^2}{R}[/tex]Adapun keterangan dari rumus di atas:π = 3,14 atau 22 : 7.ε₀ = permitivitas vakum.e = besar muatan partikel elektron.R = jarak antara elektron yang mengorbit dan proton.Ingat, asumsi bahwa elektron memiliki orbital tetap dan proton diam.Penjelasan dengan langkah-langkahDiketahui:Partikel elektron mengelilingi proton.Proton (+)Elektron (-)Muatan proton = +e.Mutan elektron = -e.Jarak proton ke elektron:r = R.Asumsi:Nilai r selalu tetap.Ditanyakan:Ek = energi kinetik = ?Penyelesaian:Langkah 1Perhitungan kecepatan partikel elektron.Pada elektron bekerja gaya sentripetal karena elektron mengorbit proton di mana arah gaya ke dalam orbit (proton).Pada elektron juga bekerja gaya electrostatic karena adanya interaksi tarik menarik antara dua partikel beda muatan.Maka:[tex]\begin{array}{ll} \sf Fs &\sf = Fm\\\\\sf \dfrac{m\times v^2}{r}&\sf =k\dfrac{(-e)^2}{r^2}\\\\\sf v^2&\sf = k\dfrac{e^2\times r}{m\times r^2}\\\\&\sf =k \dfrac{e^2}{mR} \end{array}[/tex]Keterangan:m = massa partikel elektron.e = muatan partikel elektron.Fm = gaya elektromagnetik.Fs = gaya sentripetal.r = jarak elektron ke pusat orbital = R.Langkah 2Perhitungan energi kinetik pada sistem dua partikel.[tex]\begin{array}{ll} \sf Ek&\sf = \dfrac{1}{2}\times m\times v^2\\\\&\sf = \dfrac{1}{2}\times m \times k\dfrac{e^2}{mR}\\\\&\sf =\dfrac{k\times e^2}{2R} \end{array}[/tex]Keterangan:Ek = energi kinetik.m = massa partikel elektron.v = kecepatan putar partikel elektron.e = muatan partikel elektron.k = tetapan Coulomb.Nilai k = 1 : (4πε₀)Maka:[tex]\begin{array}{ll} \sf Ek &\sf = \dfrac{1\times e^2}{(4\times \pi\times \epsilon_0)2R}\\\\&\sf = \dfrac{1}{8 \pi \epsilon_0}\dfrac{e^2}{R}\end{array}[/tex]KesimpulanJawaban yang tepat adalah A.Pelajari lebih lanjutMateri tentang perhitungan kecepatan gerak elektron lain pada https://brainly.co.id/tugas/25064516#SolusiBrainlyCommunity

Semoga dengan pertanyaan yang sudah terjawab oleh RoyAlChemi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 10 Jul 23