tolong bantu kak pls pake cara nya​

Berikut ini adalah pertanyaan dari arrezasaputra35 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Tolong bantu kak pls pake cara nya​
tolong bantu kak pls pake cara nya​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

GRADIEN GARIS

Penyelesaian yang sesuai dengan pertanyaan!

》Penjelasan :

Persamaan Garis Lurus atau PGL adalah suatu persamaan yang digambarkan pada bidang koordinat Cartesius, sehingga akan membentuk suatu garis lurus. Bentuk umum Persamaan Garis Lurus adalah

 \boxed{ y = mx + c }

 \boxed{ ax + by + c = 0 }

Rumus menentukan persamaan garis lurus

Jika diketahui 1 titik dan gradien m

 \boxed{ y - y1 = m (x-x1) }

Jika diketahui 2 titik

 \boxed{ \dfrac{ (y-y1)}{(y2-y1) } = \dfrac{ (x-x1)}{ (x2-x1)} }

 \boxed{ (y-y1)(x2-x1) = (x-x1)(y2-y1) }

Rumus menentukan Gradien Garis

Melalui 2 titik

 \boxed{ m = \dfrac{y2 - y1 }{x2 - x1 }}

Dengan bentuk umum ax + by + c = 0

 \boxed{ m = - \dfrac{a }{b } }

Hubungan garis dengan gradiennya

Saling Sejajar atau berhimpitan

 \boxed{ m1 = m2 }

Saling Tegak Lurus

 \boxed{ m1 × m2 = -1 }

Menentukan positif atau negatifnya gradien suatu garis adalah jika garis terlihat miring ke kanan maka gradiennya positif, sedangkan jika garis terlihat miring ke kiri maka gradiennya negatif. Cara menentukan gradiennya dengan jarak tinggi garis dibagi jarak alas garis dengan syarat jarak tinggi dan alasnya harus tegak lurus.

》Penyelesaian :

Soal No. 11

Gradien garis a

m = \tt \dfrac{ 4}{3 }

Soal No. 12

Gradien garis b

m = - (\tt \dfrac{ 0}{ 4} )

m = -0

m = 0

Soal No. 13

Gradien garis c

m = - (\tt \dfrac{4 }{ 2})

m = - (2)

m = -2

Soal No. 14

Gradien garis d

m = - (\tt \dfrac{ 3}{3 })

m = - (1)

m = -1

Soal No. 15

Gradien garis e

m = \tt \dfrac{2 }{ 3}

{ \green{ \boxed{ \boxed{ \sf{ {Answer \: by : AdhidMagelang}}}}}}

GRADIEN GARISPenyelesaian yang sesuai dengan pertanyaan!》Penjelasan :Persamaan Garis Lurus atau PGL adalah suatu persamaan yang digambarkan pada bidang koordinat Cartesius, sehingga akan membentuk suatu garis lurus. Bentuk umum Persamaan Garis Lurus adalah ➠ [tex] \boxed{ y = mx + c } [/tex] ➠ [tex] \boxed{ ax + by + c = 0 } [/tex]Rumus menentukan persamaan garis lurusJika diketahui 1 titik dan gradien m➠ [tex] \boxed{ y - y1 = m (x-x1) } [/tex]Jika diketahui 2 titik ➠ [tex] \boxed{ \dfrac{ (y-y1)}{(y2-y1) } = \dfrac{ (x-x1)}{ (x2-x1)} } [/tex]➠ [tex] \boxed{ (y-y1)(x2-x1) = (x-x1)(y2-y1) } [/tex]Rumus menentukan Gradien Garis Melalui 2 titik➠ [tex] \boxed{ m = \dfrac{y2 - y1 }{x2 - x1 }} [/tex]Dengan bentuk umum ax + by + c = 0➠ [tex] \boxed{ m = - \dfrac{a }{b } } [/tex]Hubungan garis dengan gradiennyaSaling Sejajar atau berhimpitan ➠ [tex] \boxed{ m1 = m2 } [/tex]Saling Tegak Lurus➠ [tex] \boxed{ m1 × m2 = -1 } [/tex]Menentukan positif atau negatifnya gradien suatu garis adalah jika garis terlihat miring ke kanan maka gradiennya positif, sedangkan jika garis terlihat miring ke kiri maka gradiennya negatif. Cara menentukan gradiennya dengan jarak tinggi garis dibagi jarak alas garis dengan syarat jarak tinggi dan alasnya harus tegak lurus.》Penyelesaian :Soal No. 11Gradien garis am = [tex]\tt \dfrac{ 4}{3 }[/tex]Soal No. 12Gradien garis bm = - ([tex]\tt \dfrac{ 0}{ 4} [/tex])m = -0m = 0Soal No. 13Gradien garis cm = - ([tex]\tt \dfrac{4 }{ 2}[/tex])m = - (2)m = -2Soal No. 14Gradien garis dm = - ([tex]\tt \dfrac{ 3}{3 }[/tex])m = - (1)m = -1Soal No. 15Gradien garis em = [tex]\tt \dfrac{2 }{ 3} [/tex][tex]{ \green{ \boxed{ \boxed{ \sf{ {Answer \: by : AdhidMagelang}}}}}}[/tex]

Semoga dengan pertanyaan yang sudah terjawab oleh AdhidMGL dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 21 Feb 22