Secepatnyahh yhhhhhh​

Berikut ini adalah pertanyaan dari elisaoktaviafahrie pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Secepatnyahh yhhhhhh​
Secepatnyahh yhhhhhh​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Teorema Pythagoras Lagi

..

terdapat beberapa triple pythagoras sederhana yang perlu kita hafalkan sebagai efisiensi waktu dalam mengerjakan persoalan segitiga siku-siku, diantaranya:

\boxed{\begin{array}{c|c|c}\underline{\bold{a}}&\underline{\bold{b}}&\underline{\bold{c}}\\\\\ 3&4&5\\\\5&12&13\\\\8&15&17\\\\7&24&25\\\\9&40&41\\\\11&60&61\\\\20&21&29\\\\12&35&37\end{array}} \begin{array}{lr} \: \to \: c {}^{2} = a {}^{2} + b {}^{2} \\ \: \to \: c = \sqrt{a {}^{2} + b {}^{2} } \\ \: \to \: a = \sqrt{c {}^{2} - b {}^{2} } \\ \: \to \: b = \sqrt{c {}^{2} - a {}^{2} } \end{array}

[Berlaku Kelipatan]

Dimana:

  • c sebagai sisi miring (hipotenusa)
  • a dan b sebagai sisi penyiku

Penyelesaian Soal

Pertama kita perlu menentukan titik dasar dan puncak menara, saya sebut saja titik O untuk dasar dan P untuk puncak. Diketahui bahwasanya panjang OP adalah 24 m dan jarak P→M2 adalah 26 m, Triple Pythagoras yang memenuhi bilangan tersebut adalah 5, 12, 13 dengan Kelipatan 2 (10, 24, 26) Maka dapat disimpulkan bahwa jarak O→M2 adalah 10 meter.

Triple Pythagoras lain yang terdapat bilangan 24 ialah 7, 24, 25maka dari itu dapat disimpulkan bahwa jarakO→M2 adalah 7 meter.

..

Maka, jarak M1→M2:

= O→M2 - O→M1

= 10 meter - 7 meter

= 3 meter

..

\begin{array}{lr}\texttt{Rate 1.0 Jika Kalian Iri dengan}\\\\ \texttt{Yang Mulia Maharaja Danial Alf'at}\end{array} ☝️

\boxed{\colorbox{ccddff}{Answered by Danial Alf'at}}\boxed{\colorbox{ccddff}{12/03/23}}

Semoga dengan pertanyaan yang sudah terjawab oleh DANIALALFAT7 dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Sat, 10 Jun 23