Bantu jawab pakai cara dan rumus​ kak​

Berikut ini adalah pertanyaan dari andika7274236 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

Bantu jawab pakai cara dan rumus​ kak​
Bantu jawab pakai cara dan rumus​ kak​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Integral Parsial

\boxed{\int {u} \, dv=u\cdot v -\int {v} \, du}  

7.  \int {x(2x-1)^{-3} } \, dx=\int {u} \, dv

u = x

du/dx = 1

du = dx

dv=(2x-1)^{-3}\\\\v=\int{(2x-1)^{-3}} \, dx \\\\v=\frac{1}{-2} \cdot \frac{1}{2}(2x-1)^{-2} \\\\v=-\frac{1}{4} (2x-1)^{-2}

\int {x(2x-1)^{-3} } \, dx\\\\=u\cdot v-\int {v} \, du\\\\=x\cdot (-\frac{1}{4})(2x-1)^{-2} -\int { (-\frac{1}{4})(2x-1)^{-2} } \, dx \\ \\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4} \int {(2x-1)^{-2} } \, dx\\\\=-\frac{x}{4}(2x-1)^{-2}+\frac{1}{4}\cdot \frac{1}{-1}\cdot \frac{1}{2}(2x-1)^{-1} +C\\ \\=-\frac{x}{4}(2x-1)^{-2}-\frac{1}{8}(2x-1)^{-1} +C\\\\\boxed{=-\frac{x}{4(2x-1)^{2}} -\frac{1}{8(2x-1)} +C}

8.  \int {x^{4} \sqrt{1+x^{2} } } \, dx=\int {u} \, dv

u = x⁴

du/dx = 4x³

du = 4x³ dx

dv=\sqrt{1+x^{2} } \\\\dv=(1+x^{2} )^{\frac{1}{2} } \\\\v=\int {(1+x^{2} )^{\frac{1}{2} } } \, dx \\\\v=\frac{1}{\frac{3}{2} } (1+x^{2} )^{\frac{3}{2} }\\\\v=\frac{2}{3} (1+x^{2} )^{\frac{3}{2}}

\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=x^{4}\cdot \frac{2}{3} (1+x^{2} )^{\frac{3}{2}}-\int {\frac{2}{3} (1+x^{2} )^{\frac{3}{2}} 4x^{3} } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx

Ada integral parsial lagi di sini, maka dimisalkan jadi u dv lagi

\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx

u = x³

du/dx = 3x²

du = 3x² dx

dv= (1+x^{2} )^{\frac{3}{2}}\\\\v=\int { (1+x^{2} )^{\frac{3}{2}}} \, dx \\\\v=\frac{1}{\frac{5}{2} }\cdot \frac{1}{1} (1+x^{2} )^{\frac{5}{2}}\\\\v=\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}

\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= x^{3} \cdot \frac{2}{5} (1+x^{2} )^{\frac{5}{2}} -\int {\frac{2}{5} (1+x^{2} )^{\frac{5}{2}}} \, 3x^{2} dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx

Ada integral parsial lagi, dimisalkan jadi u dv

\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx

u = x²

du/dx = 2x

du = 2x dx

dv=(1+x^{2} )^{\frac{5}{2} } \\\\v=\int {(1+x^{2} )^{\frac{5}{2} } } \, dx \\\\v=\frac{1}{\frac{7}{2} } (1+x^{2} )^{\frac{7}{2} }\\\\v=\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }

\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=x^{2} \cdot \frac{2}{7} (1+x^{2} )^{\frac{7}{2} } -\int {\frac{2}{7} (1+x^{2} )^{\frac{7}{2} }} 2x\, dx \\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx

Sekali lg, terdapat integral parsial lagi:)

\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx

u = x

du/dx = 1

du = dx

dv=(1+x^{2} )^{\frac{7}{2} }\\\\v=\int {(1+x^{2} )^{\frac{7}{2} }} \, dx \\\\v=\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }

\int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=x\cdot \frac{2}{9}(1+x^{2} )^{\frac{9}{2} }-\int {\frac{2}{9}(1+x^{2} )^{\frac{9}{2} }} \, dx \\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9} \int {(1+x^{2} )^{\frac{9}{2} }} \, dx\\\\=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{2}{9}\cdot\frac{2}{11} (1+x^{2} )^{\frac{11}{2} }+C

=\frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C

Akhirnya dpt 1 hasilnya, substitusi ke integral parsial sblm ini

\int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7} \int {x(1+x^{2} )^{\frac{7}{2} }} \, dx\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{4}{7}\cdot \frac{2x}{9} (1+x^{2} )^{\frac{9}{2} }-\frac{4}{7}\cdot \frac{4}{99}(1+x^{2} )^{\frac{11}{2} }+C\\\\=\frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C

Kita substitusi lagi ke integral parsial sblmnya

\int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \int {x^{2} (1+x^{2} )^{\frac{5}{2}}} \, dx\\\\=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{6}{5} \cdot \frac{2x^{2} }{7} (1+x^{2} )^{\frac{7}{2} }-\frac{6}{5}\cdot \frac{8x}{63} (1+x^{2} )^{\frac{9}{2} }-\frac{6}{5}\cdot \frac{16}{693 }(1+x^{2} )^{\frac{11}{2} }+C

=\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} }+C

Substitusi lagii ke sblmnya, plg awal

\int {x^{4} \sqrt{1+x^{2} } } \, dx\\\\=\frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} \int {x^{3} (1+x^{2} )^{\frac{3}{2}} } \, dx\\\\= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}-\frac{8}{3} (\frac{2x^{3} }{5} (1+x^{2} )^{\frac{5}{2}}-\frac{12x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{16x}{105} (1+x^{2} )^{\frac{9}{2} }-\frac{32}{1155} (1+x^{2} )^{\frac{11}{2} })+C

\boxed{= \frac{2x^{4} }{3} (1+x^{2} )^{\frac{3}{2}}- \frac{16x^{3} }{15} (1+x^{2} )^{\frac{5}{2}}-\frac{32x^{2} }{35} (1+x^{2} )^{\frac{7}{2} }-\frac{128x}{315} (1+x^{2} )^{\frac{9}{2} }-\frac{256}{3465} (1+x^{2} )^{\frac{11}{2} }+C}

Finallyy dpt hasil nomor 8.

\boxed{\sf{shf}}

Semoga dengan pertanyaan yang sudah terjawab oleh ShofwatulAfifah dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 05 May 23