QuizzPrumustasi dari kata Pesan ini mengandung bahasa terlarang​

Berikut ini adalah pertanyaan dari dhealuktania4 pada mata pelajaran B. Arab untuk jenjang Sekolah Menengah Atas

QuizzPrumustasi dari kata

Pesan
ini
mengandung
bahasa
terlarang


QuizzPrumustasi dari kata Pesan ini mengandung bahasa terlarang​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

answer :

Formula:

nPr =n!  / (n1! n2! . . . nk!)

"PESAN" = 120 distinct ways to arrange different words.

• n = 5

• Subsets : P = 1; E = 1; S = 1; A = 1; N = 1;

• n1(P) = 1, n2(E) = 1, n3(S) = 1, n4(A) = 1, n5(N) = 1

==================

=5!  / (1! 1! 1! 1! 1! )

=1 x 2 x 3 x 4 x 5  / {(1) (1) (1) (1) (1)}

=120 / 1

= 120

In 120 distinct ways, the letters of word "PESAN" can be arranged.

"INI" = 3 distinct ways to arrange different words.

• n = 3

• Subsets : I = 2; N = 1;

• n1(I) = 2, n2(N) = 1

==================

nPr formula

=3!  / (2! 1! )

=1 x 2 x 3  / {(1 x 2) (1)}

=6  / 2

= 3

In 3 distinct ways, the letters of word "INI" can be arranged.

"MENGANDUNG" = 302400 distinct ways

• n = 10

• Subsets : M = 1; E = 1; N = 3; G = 2; A = 1; D = 1; U = 1;

• n1(M) = 1, n2(E) = 1, n3(N) = 3, n4(G) = 2, n5(A) = 1, n6(D) = 1, n7(U) = 1

==================

nPr formula

=10!  / (1! 1! 3! 2! 1! 1! 1! )

=1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 x 10  / {(1) (1) (1 x 2 x 3) (1 x 2) (1) (1) (1)}

=3628800  / 12

= 302400

In 302400 distinct ways, the letters of word "MENGANDUNG" can be arranged.

"BAHASA" = 120 distinct ways

• n = 6

• Subsets : B = 1; A = 3; H = 1; S = 1;

• n1(B) = 1, n2(A) = 3, n3(H) = 1, n4(S) = 1

==================

nPr formula

=6!  / (1! 3! 1! 1! )

=1 x 2 x 3 x 4 x 5 x 6  / {(1) (1 x 2 x 3) (1) (1)}

=720  / 6

= 120

In 120 distinct ways, the letters of word "BAHASA" can be arranged.

"TERLARANG" = 90720 distinct ways

• n = 9

• Subsets : T = 1; E = 1; R = 2; L = 1; A = 2; N = 1; G = 1;

• n1(T) = 1, n2(E) = 1, n3(R) = 2, n4(L) = 1, n5(A) = 2, n6(N) = 1, n7(G) = 1

==================

nPr formula

=9!  / (1! 1! 2! 1! 2! 1! 1! )

=1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9  / {(1) (1) (1 x 2) (1) (1 x 2) (1) (1)}

=362880  / 4

= 90720

In 90720 distinct ways, the letters of word "TERLARANG" can be arranged.

answer :
Formula:
nPr =n!  / (n1! n2! . . . nk!)

Semoga dengan pertanyaan yang sudah terjawab oleh MarifbudimanAT dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 10 Jan 22