Q.[tex].[/tex]Diketahui suatu fungsi :f(p) = 2p × 200p + 2p

Berikut ini adalah pertanyaan dari Neuil12 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Q..
Diketahui suatu fungsi :
f(p) = 2p × 200p + 2p + 2p³ - 20
Ditanya ⬇
f(2) = ...
f(3) = ...
f(4) = ...
f(5) = ...
f(6) = ...
f(7) = ...
f(8) = ...
f(9) = ...
f(10) = ...
f(11) = ...
f(12) = ...


-^- ​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Diketahui :

\sf \bf \tt f(p) = 2p × 200p + 2p + 2p³ - 20

Ditanya :

f(2) = ...

f(3) = ...

f(4) = ...

f(5) = ...

f(6) = ...

f(7) = ...

f(8) = ...

f(9) = ...

f(10) = ...

f(11) = ...

f(12) = ...

Jawab :

  • Menentukan nilai f(p)

\sf \bf \tt f(p) = 2p × 200p + 2p + 2p³ - 20

\bold{\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20}

  • Menentukan nilai f(2)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(2) = 400(2²) + 2(2) + 2(2³) - 20

\sf \bf \tt f(2) = 400(2 × 2) + 2(2) + 2(2×2×2) - 20

\sf \bf \tt f(2) = 400(4) + 2(2) + 2(2×2×2) - 20

\sf \bf \tt f(2) = 1.600+ 2(2) + 2(2×2×2) - 20

\sf \bf \tt f(2) = 1.600+ 4 + 2(2×2×2) - 20

\sf \bf \tt f(2) = 1.600+ 4 + 2(4×2) - 20

\sf \bf \tt f(2) = 1.600+ 4 + 2(8)- 20

\sf \bf \tt f(2) = 1.600+ 4 + 16- 20

\sf \bf \tt f(2) = 1.604 + 16- 20

\sf \bf \tt f(2) = 1.620- 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(2) = 1.600}}}}

  • Menentukan nilai f(3)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(3) = 400(3²) + 2(3) + 2(3³) - 20

\sf \bf \tt f(3) = 400(3×3) + 2(3) + 2(3×3×3) - 20

\sf \bf \tt f(3) = 400(9) + 2(3) + 2(3×3×3) - 20

\sf \bf \tt f(3) = 3.600+ 2(3) + 2(3×3×3) - 20

\sf \bf \tt f(3) = 3.600+ 6 + 2(3×3×3) - 20

\sf \bf \tt f(3) = 3.600+ 6 + 2(9×3) - 20

\sf \bf \tt f(3) = 3.600+ 6 + 2(27)- 20

\sf \bf \tt f(3) = 3.600+ 6 + 54- 20

\sf \bf \tt f(3) = 3.606 + 54- 20

\sf \bf \tt f(3) = 3.660 - 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(3) = 3.640}}}}

  • Menentukan nilai f(4)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(4) = 400(4²) + 2(4) + 2(4³) - 20

\sf \bf \tt f(4) = 400(4×4) + 2(4) + 2(4×4×4) - 20

\sf \bf \tt f(4) = 400(16) + 2(4) + 2(4×4×4) - 20

\sf \bf \tt f(4) = 6.400+ 2(4) + 2(4×4×4) - 20

\sf \bf \tt f(4) = 6.400+ 8 + 2(4×4×4) - 20

\sf \bf \tt f(4) = 6.400+ 8 + 2(16×4) - 20

\sf \bf \tt f(4) = 6.400+ 8 + 2(64)- 20

\sf \bf \tt f(4) = 6.400+ 8 + 128- 20

\sf \bf \tt f(4) = 6.408+ 128- 20

\sf \bf \tt f(4) = 6.536- 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(4) = 6.516}}}}

  • Menentukan nilai f(5)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(5) = 400(5²) + 2(5) + 2(5³) - 20

\sf \bf \tt f(5) = 400(5×5) + 2(5) + 2(5×5×5) - 20

\sf \bf \tt f(5) = 400(25) + 2(5) + 2(5×5×5) - 20

\sf \bf \tt f(5) = 10.000+ 2(5) + 2(5×5×5) - 20

\sf \bf \tt f(5) = 10.000+ 10 + 2(5×5×5) - 20

\sf \bf \tt f(5) = 10.000+ 10 + 2(25×5) - 20

\sf \bf \tt f(5) = 10.000+ 10 + 2(125)- 20

\sf \bf \tt f(5) = 10.000+ 10 + 250- 20

\sf \bf \tt f(5) = 10.010+ 250- 20

\sf \bf \tt f(5) = 10.260- 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(5) = 10.240}}}}

  • Menentukan nilai f(6)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(6) = 400(6²) + 2(6) + 2(6³) - 20

\sf \bf \tt f(6) = 400(6×6) + 2(6) + 2(6×6×6) - 20

\sf \bf \tt f(6) = 400(36) + 2(6) + 2(6×6×6) - 20

\sf \bf \tt f(6) = 14.400+ 2(6) + 2(6×6×6) - 20

\sf \bf \tt f(6) = 14.400+ 12 + 2(6×6×6) - 20

\sf \bf \tt f(6) = 14.400+ 12 + 2(36×6) - 20

\sf \bf \tt f(6) = 14.400+ 12 + 2(216)- 20

\sf \bf \tt f(6) = 14.400+ 12 + 432- 20

\sf \bf \tt f(6) = 14.412 + 128- 20

\sf \bf \tt f(6) = 14.540 - 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(6) = 14.520}}}}

  • Menentukan nilai f(7)

\sf \bf \tt f(p) = 400p² + 2p + 2p³ - 20

\sf \bf \tt f(7) = 400(7²) + 2(7) + 2(7³) - 20

\sf \bf \tt f(7) = 400(7×7) + 2(7) + 2(7×7×7) - 20

\sf \bf \tt f(7) = 400(49) + 2(7) + 2(7×7×7) - 20

\sf \bf \tt f(7) = 19.600+ 2(7) + 2(7×7×7) - 20

\sf \bf \tt f(7) = 19.600+ 14 + 2(7×7×7) - 20

\sf \bf \tt f(7) = 19.600+ 14 + 2(49×7) - 20

\sf \bf \tt f(7) = 19.600+ 14 + 2(343)- 20

\sf \bf \tt f(7) = 19.600+ 14 + 686- 20

\sf \bf \tt f(7) = 19.614+ 686- 20

\sf \bf \tt f(7) = 20.300 - 20

\bold{\underline{\boxed{\pink{\sf \bf \tt f(7) = 20.280}}}}

#BelajarBersamaBrainly

Semoga dengan pertanyaan yang sudah terjawab oleh XxDarkgoldenxX dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Thu, 20 Oct 22