persamaan garis yang melalui titik (-2, 4) dan (6, 3)

Berikut ini adalah pertanyaan dari keyygoodgirl pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Pertama

Persamaan garis yang melalui titik (-2, 4) dan (6, 3) adalah​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

Persamaan garis yang melalui titik (-2,4) dan (6,3) adalah  \bf x+8y-30=0.

Pendahuluan :

 \rm \blacktriangleright Pengertian~dan~Bentuk~Umum :

Persamaan Garis Lurus (PGL) adalah suatu persamaan apabila digambarkan pada bidang koordinat Cartesius akan membentuk suatu garis lurus.

Bentuk umum Persamaan Garis Lurus :

\boxed{y = mx + c}

atau

\boxed{ax + by + c = 0}

Keterangan :

 \hspace{0.3cm}• x = kedudukan sumbu horizontal

 \hspace{0.3cm}• y = kedudukan sumbu vertikal

 \hspace{0.3cm}• m = kemiringan garis (gradien)

 \hspace{0.3cm}• c = konstanta

 \hspace{0.3cm}• a = koefisien dari x

 \hspace{0.3cm}• b = koefisien dari y

 \\

Berikut adalah beberapa rumus dari materi PGL :

 \rm \blacktriangleright Menentukan~Gradien :

 \hspace{0.3cm}• y = mx + c ===> koefisien x sebagai gradien

 \hspace{0.3cm}• Melalui 2 titik :  \boxed{m = \frac {y_2-y_1}{x_2 - x_1}}

 \hspace{0.3cm}• ax + by + c = 0 ===>  \boxed{m = \frac {-a}{b}}

 \\

 \rm \blacktriangleright Menentukan~ Persamaan~Garis :

 \hspace{0.3cm}• Melalui 1 titik dan telah diketahui gradiennya :  \boxed{y-y_1 = m(x-x_1)}

 \hspace{0.3cm}• Melalui 2 titik :  \boxed{\frac {y-y_1}{y_2-y_1} = \frac {x-x_1}{x_2-x_1}}

 \\

 \rm \blacktriangleright Hubungan~Antar~Garis :

 \hspace{0.3cm}• Sejajar :  \boxed{m_1 = m_2}

 \hspace{0.3cm}• Berpotongan :  \boxed{m_1 \ne m_2}

 \hspace{0.3cm}• Tegak Lurus :  \boxed{m_1 \times m_2 = -1}

 \hspace{0.3cm}• Berimpit :  \boxed{m_1 = m_2\: \: dan\: \: c_1 = c_2}

Pembahasan :

Diketahui :

Suatu garis melalui titik (-2,4) dan (6,3)

Ditanya :

Persamaan garisnya?

Jawab :

  •  \rm (-2,4) = (x_1,y_1)
  •  \rm (6,3) = (x_2,y_2)

 \rm \frac{y-y_1}{y_2-y_1} = \frac{x-x_1}{x_2-x_1}

 \rm \frac{y-4}{3-4} = \frac{x-(-2)}{6-(-2)}

 \rm \frac{y-4}{-1} = \frac{x+2}{8}

 \rm 8(y-4) = -1(x+2)

 \rm 8y-32 = -x-2

 \rm x+8y-32+2=0

 \bf x+8y-30=0

Kesimpulan :

Jadi, persamaan garisnya  \bf x+8y-30=0.

Pelajari Lebih Lanjut :

1) Menentukan Gradien dari berbagai Bentuk Persamaan Garis Lurus

2) Menentukan Persamaan Garis yang Diketahui Gradiennya

3) Menentukan Persamaan Garis yang Melalui 2 Titik pada Grafik

4) Menentukan Persamaan Garis dari Garis yang Tegak Lurus dengan Garis yang Lain

5) Mencari Nilai Suatu Variabel Dalam Garis yang Sejajar dengan Garis Lain

Detail Jawaban :

  • Kelas : 8
  • Mapel : Matematika
  • Materi : Persamaan Garis Lurus
  • Kode Kategorisasi : 8.2.3.1
  • Kata Kunci : PGL, Dua Titik

Semoga dengan pertanyaan yang sudah terjawab oleh KevinWinardi dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Fri, 03 Feb 23