# Mohon bantuannya kak# Asal Lapor​

Berikut ini adalah pertanyaan dari Agnesmonica91 pada mata pelajaran Matematika untuk jenjang Sekolah Menengah Atas

# Mohon bantuannya kak
# Asal Lapor​
# Mohon bantuannya kak# Asal Lapor​

Jawaban dan Penjelasan

Berikut ini adalah pilihan jawaban terbaik dari pertanyaan diatas.

\purple{\huge{1.}}

Terdapat identitas trigononetri :

\boxed{\boxed{\sin^2~x+\cos^2~x=1}}

\cos~\text{A}=\sqrt{1-\sin^2~\text{A}}=\sqrt{1-\left(\frac{4}{5}\right)^2}=\sqrt{1-\frac{16}{25}}=\sqrt{\frac{9}{25}}=\frac{3}{5}

\cos~\text{B}=\sqrt{1-\sin^2~\text{B}}=\sqrt{1-\left(\frac{8}{10}\right)^2}=\sqrt{1-\frac{64}{100}}=\sqrt{\frac{36}{100}}=\frac{6}{10}

Terdapat identitas trigonometri :

\boxed{\boxed{\sin~(x+y)=\sin~x.\cos~y+\cos~x.\sin~y}}

\sin~(\text{A}+\text{B})=\sin~\text{A}.\cos~\text{B}+\cos~\text{A}.\sin~\text{B}=\left(\frac{4}{5}\right).\left(\frac{6}{10}\right)+\left(\frac{3}{5}\right).\left(\frac{8}{10}\right)=\frac{24}{50}+\frac{24}{50}=\frac{48}{50}

\red{\huge{\sin~(\text{A}+\text{B})=\frac{24}{25}}}

\\

\purple{\huge{2.}}

Terdapat identitas trigonometri :

\boxed{\boxed{\cos~(x+y)=\cos~x.\cos~y-\sin~x.\sin~y}}

\cos~(\text{A}+\text{B})=\cos~\text{A}.\cos~\text{B}-\sin~\text{A}.\sin~\text{B}=\left(\frac{3}{5}\right).\left(\frac{6}{10}\right)-\left(\frac{4}{5}\right).\left(\frac{8}{10}\right)=\frac{18}{50}-\frac{32}{50}=-\frac{14}{50}

\red{\huge{\cos~(\text{A}+\text{B})=-\frac{7}{25}}}

\\

\purple{\huge{3.}}

\sin~\alpha=\sqrt{1-\cos^2~\alpha}=\sqrt{1-\left(\frac{5}{13}\right)^2}=\sqrt{1-\frac{25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13}

\cos~2\alpha=\cos~(\alpha+\alpha)=\cos~\alpha.\cos~\alpha-\sin~\alpha.\sin~\alpha=\cos^2~\alpha-\sin^2~\alpha

\cos~2\alpha=\left(\frac{5}{13}\right)^2-\left(\frac{12}{13}\right)^2=\frac{25}{169}-\frac{144}{169}

\red{\huge{\cos~2\alpha=-\frac{119}{169}}}

\\

\purple{\huge{4.}}

Terdapat identitas trigonometri :

\boxed{\boxed{\begin{array}{ccc}\cos~x+~\cos~y=\\2.\cos~\frac{1}{2}(x+y).\cos~\frac{1}{2}(x-y)\end{array}}}

\cos~75\degree+\cos~15\degree=2.\cos~\frac{1}{2}(75\degree+15\degree).\cos~\frac{1}{2}(75\degree-15\degree)=2.\cos~45\degree.\cos~30\degree=2.\left(\frac{1}{2}\sqrt{2}\right).\left(\frac{1}{2}\sqrt{3}\right)

\red{\huge{\begin{array}{ccc}\cos~75\degree+\cos~15\degree\\=\frac{1}{2}\sqrt{6}\end{array}}}

\\

\purple{\huge{5.}}

Terdapat identitas trigonometri :

\boxed{\boxed{\begin{array}{ccc}\sin~x.\cos~y=\\\frac{1}{2}.\left(\sin~(x+y)+\sin~(x-y)\right)\end{array}}}

\sin~105\degree.\cos~15\degree=\frac{1}{2}.\left(\sin~(105\degree+15\degree)+\sin~(105\degree-15\degree)\right)=\frac{1}{2}.\left(\sin~120\degree+\sin~90\degree\right)=\frac{1}{2}.\left(\frac{1}{2}\sqrt{3}+1\right)

\red{\huge{\begin{array}{ccc}\sin~105\degree.\cos~15\degree\\=\frac{1}{4}\sqrt{3}+\frac{1}{2}\end{array}}}

\\

\purple{\huge{6.}}

\cos~\alpha=\sqrt{1-\sin^2~\alpha}=\sqrt{1-\left(\frac{5}{13}\right)^2}=\sqrt{1-\frac{25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13}

\sin~2\alpha=\sin~(\alpha+\alpha)=\sin~\alpha.\cos~\alpha+\cos~\alpha.\sin~\alpha=2.\sin~\alpha.\cos~\alpha

\sin~2\alpha=2.\left(\frac{5}{13}\right).\left(\frac{12}{13}\right)

\red{\huge{\sin~2\alpha=\frac{120}{169}}}

Semoga dengan pertanyaan yang sudah terjawab oleh WillyJember dapat membantu memudahkan mengerjakan soal, tugas dan PR sekolah kalian.

Apabila terdapat kesalahan dalam mengerjakan soal, silahkan koreksi jawaban dengan mengirimkan email ke yomemimo.com melalui halaman Contact

Last Update: Mon, 12 Jul 21